一、HashMap源码分析
HashMap源码分析:
HashMap 底层是数组加链表的形式
//hashMap默认的容量大小为16 必须是2的幂次方
static final int DEFAULT_INITIAL_CAPACITY = 16;
//hashMap 2的幂次方容量 <= 1<<30
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认负载系数 用于判断hashMap什么时候进扩容
static final float DEFAULT_LOAD_FACTOR = 0.75f
//hashMap底层是Entry数组
transient Entry<K,V>[] table
//容量大小
transient int size;
// threshold=容量*负载系数
int threshold;
// 负载系数
final float loadFactor;
// the HashMap fail-fast 集合在遍历时,不能进行修改,增加和删除
transient int modCount;
HashMap 构造函数
//无参构造函数 容量为默认的16 负载系数为0.75
public HashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}
//指定容量大小的 负载系数为0.75
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//指定容量和负载系数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
int capacity = 1;
//遍历 找到2的幂 >= 指定容量 确认hashMap的容量
while (capacity < initialCapacity)
capacity* <<= 1;
this.loadFactor = loadFactor;
//记录 capacity*loadFactor 的大小
threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
//创建长度为capacity 的数组
table = new Entry[capacity];
useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
init();
}
hashMap 存入键值对
//put
public V put(K key, V value) {
//如果存入的key为null
if (key == null)
return putForNullKey(value);
//确认hash值
int hash = hash(key);
//确认桶的位置
int i = indexFor(hash, table.length);
//遍历桶的位置上是否有相同的可以,有就替换,返回旧值
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i);
return null;
}
//存入key为null的值
private V putForNullKey(V value) {
//取第一个桶,如果也存在key为null值,则替换,返回旧值
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
//则hash值为0 ,放在第一个桶里 返回null
addEntry(0, null, value, 0);
return null;
}
//将添加元素放入到数组中
void addEntry(int hash, K key, V value, int bucketIndex) {
//如果当前集合的大小大于等于 threshold(当前容量*负载系数) 并且插入的数组位置不为空,则进行扩容
if ((size >= threshold) && (null != table[bucketIndex])) {
//扩容为原来的2倍
resize(2 * table.length);
//扩容后需要重新计算hash值
hash = (null != key) ? hash(key) : 0;
//根据hash值和数组的长度确认放入桶的位置
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
//扩容
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity];
boolean oldAltHashing = useAltHashing;
useAltHashing |= sun.misc.VM.isBooted() &&
(newCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
boolean rehash = oldAltHashing ^ useAltHashing;
//将旧数组的元素转移到新数组中
transfer(newTable, rehash);
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
//扩容后将旧数组转移到新数组
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
// 确认元素存入桶的位置
static int indexFor(int h, int length) {
return h & (length-1);
}
//添加元素进桶
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
hashMap根据key获取值
public V get(Object key) {
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
//如果key为null则去第一个桶的,如果有在返回,没有就返回null
private V getForNullKey() {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
//根据key获取Entry
final Entry<K,V> getEntry(Object key) {
//首先通过key获取hash值
int hash = (key == null) ? 0 : hash(key);
//然后找到元素存放的桶,遍历桶上的元素,没有返回null
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
hashMap清空
public void clear() {
modCount++;
Entry[] tab = table;
for (int i = 0; i < tab.length; i++)
tab[i] = null;
size = 0;
}
判断hashMap中是否包含value
public boolean containsValue(Object value) {
if (value == null)
return containsNullValue();
Entry[] tab = table;
//遍历所有数组中的Entry
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;
return false;
}
hashMap 内部类 Entry
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
int hash;
/**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
}
总结:
1.hashMap底层是数组和加链表的形式,元素都是存放在一个一个桶里,以key的hash值和数组的大小确认
2.hashMap默认的容量大小为16,负载系数为0.75 也就是当容量大小为12是,就会进行扩容,容量为原来的2倍,这方面平时需要注意,尽量减少扩容
3.hashMap中的Entry分别存放了 key,value,本身,还有hash值