ACboy needs your help
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6242 Accepted Submission(s): 3427
Problem Description
ACboy has N courses this term, and he plans to spend at most M days on study.Of course,the profit he will gain from different course depending on the days he spend on it.How to arrange the M days for the
N courses to maximize the profit?
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers N and M, N is the number of courses, M is the days ACboy has.
Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j].
N = 0 and M = 0 ends the input.
Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j].
N = 0 and M = 0 ends the input.
Output
For each data set, your program should output a line which contains the number of the max profit ACboy will gain.
Sample Input
2 2 1 2 1 3 2 2 2 1 2 1 2 3 3 2 1 3 2 1 0 0
Sample Output
3 4 6 题意: 有N门课,花费M天。不同课程的收益取决于在它上花费的时间。怎样为N门课程安排M天让总收益最大化? 解题思路:就是一道分组背包模板题。 以下是背包九讲的内容: 6 分组的背包问题 6.1 问题 有N件物品和一个容量为V 的背包。第i件物品的费用是Ci,价值是Wi。这 些物品被划分为K组,每组中的物品互相冲突,最多选一件。求解将哪些物品 装入背包可使这些物 品的费用总和不超过背包容量,且价值总和最大。 6.2 算法 这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件 都不选。也就是说设F[k,v]表示前k组物品花费费用v能取得的最大权值,则 有: F[k,v] = max{F[k−1,v],F[k−1,v−Ci] + Wi |item i ∈ group k} 使用一维数组的伪代码如下: for k = 1 to K for v = V to 0 for item i in group k F[v] = max{F[v],F[v−Ci] + Wi} 这里三层循环的顺序保证了每一组内的物品最多只有一个会被添 加到背包中。 另外,显然可以对每组内的物品应用2.3中的优化。 6.3 小结 分组的背包问题将彼此互斥的若干物品称为一个组,这建立了一个很好的 模型。不少背包问题的变形都可以转化为分组的背包问题(例如7),由分组的 背包问题进一步可 定义“泛化物品”的概念,十分有利于解题。<span style="font-size:18px;">#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; const int maxn=105; int value[maxn][maxn]; int dp[maxn]; int main() { int n,m; while(~scanf("%d %d",&n,&m) && (n||m)) { for(int i=1;i<=n;i++) { for(int j=1;j<=m;j++){ scanf("%d",&value[i][j]); } } memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++) { for(int j=m;j>=0;j--) { for(int k=1;k<=j;k++) { if(dp[j]<dp[j-k]+value[i][k]) dp[j]=dp[j-k]+value[i][k]; } } } printf("%d\n",dp[m]); } return 0; }</span>