1机器学习基础—2统计学习方法概论

本文介绍了机器学习的基础概念,包括监督学习与无监督学习的区别,以及它们的应用场景。详细解释了分类与回归的任务特点,并对统计学习方法进行了概述,涵盖了模型选择策略和常用的学习算法。

一、机器学习基础

1.监督学习一般使用两种类型的目标变量:标称型和数值型。

在分类算法中目标变量的类型通常是标称型的,而在回归算法中通常是连续性的。

2.分类和回归都属于监督学习。分类是将实例数据划分到合适的分类中,回归主要用于预测数值型数据。

与监督学习相对应的是无监督学习,此时数据没有类别信息,也不会给定目标值。在无监督学习中,将数据集合分成由类似的对象组成的多个类的过程被称为聚类;将寻找描述数据统计值的过程称之为密度估计。此外,无监督学习还可以减少数据特征的维度,以便我们可以使用二维或三维图形更加直观地展示数据信息。

3.numpy函数库基础

rand()函数构造随机数组;mat()函数可以将数组转化为矩阵。

二、统计学习方法概论+感知机

1.统计学习总的目标就是考虑学习什么样的模型和如何学习模型,以使模型能对数据进行准确的预测与分析,同时也要考虑尽可能地提高学习效率。

2.统计学习的方法是基于数据构建统计模型从而对数据进行预测与分析。统计学习由监督学习、非监督学习、半监督学习和强化学习等组成。

3.监督学习下统计学习的方法可以概括如下:从给定的、有限的、用于学习的训练数据集合出发,假设数据是独立同分布产生的;并且假设要学习的模型属于某个函数的集合,称为假设空间;应用某个评价准则,从假设空间种选取一个最优的模型,使它对已知训练数据及未知测试数据在给定的评价准则下有最优的预测;最优模型的选取由算法实现。

这样,统计学习方法包括模型的假设空间、模型选择的准则以及模型学习的算法,称其为统计学习方法的三要素,简称为模型、策略和算法。

(1)模型:统计学习首要考虑的问题是学习什么样的模型。在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。模型的假设空间包含所有可能的条件概率分布或决策函数;

称由决策函数表示的模型为非概率模型,由条件概率表示的模型为概率模型。

(2)策略:统计学习的目标在于从假设空间中选取最优模型。

损失函数(代价函数)与风险函数(期望损失):损失函数度量模型一次预测的好坏;风险函数度量平均意义下模型预测的好坏。

(3)

4.输入变量X和输出变量Y有不同的类型,可以是连续的,也可以是离散的。人们根据输入、输出变量的不同类型,对预测任务给予不同的名称:

输入变量与输出变量均为连续变量的预测问题称为回归问题;

输出变量为有限个离散变量的预测问题称为分类问题;

输入变量与输出变量均为变量序列的预测问题称为标注问题。

5.监督学习分为学习和预测两个过程,由学习系统与预测系统完成。

6.两种常用的模型选择方法:正则化与交叉验证。

7.监督学习方法可以分为生成方法和判别方法,所学到的模型分别称为生成模型和判别模型。

直接对问题进行求解,比如二类分类问题,不管是感知器算法还是逻辑斯谛回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例只要判断在直线的哪一侧即可,这种直接对问题求解的方法可以称为判别学习方法。判别方法由数据直接学习决策函数f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。判别方法关心的是对给定的输入X,应该预测什么样的输出Y,典型的判别模型包括:k-近邻法、感知机、决策树、逻辑斯谛回归模型,最大熵模型,支持向量机,提升方法和条件随机场等。

而生成学习算法则是对两个类别分别进行建模,比如分别计算两类肿瘤是否扩散的概率,计算肿瘤大小大于某个值的概率等等;再比如狗与大象的分类,分别对狗与大象建模,比如计算体重大于某个值的概率,鼻子长度大于某个值的概率。生成方法由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:P(Y|X)=P(X,Y)/P(X),这样的方法之所以称为生成模型,是因为模型表示了给定输入X产生输出Y的生成关系。典型的生成模型有:朴素贝叶斯法和隐马尔可夫模型。形式化的说,判别学习方法是直接对 p(y|x)进行建模或者直接学习输入空间 到输出空间的映射关系,其中,x 是某类样例的特征,y 是某类样例的分类标记。 而生成学习方法是对 p(x|y)(条件概率)和 p(y)(先验概率)进行建模,然后按 照贝叶斯法则求出后验概率 p(y|x)。

8.习题

这是一个基于AI视觉识别与3D引擎技术打造的沉浸式交互圣诞装置。 简单来说,它是一棵通过网页浏览器运行的数字智慧圣诞树,你可以用真实的肢体动作来操控它的形态,并将自己的回忆照片融入其中。 1. 核心技术组成 这个作品是由三个尖端技术模块组成的: Three.js 3D引擎:负责渲染整棵圣诞树、动态落雪、五彩挂灯和树顶星。它创建了一个具备光影和深度感的虚拟3D空间。 MediaPipe AI手势识别:调用电脑摄像头,实时识别手部的21个关键点。它能读懂你的手势,如握拳、张开或捏合。 GSAP动画系统:负责处理粒子散开与聚合时的平滑过渡,让成百上千个物体在运动时保持顺滑。 2. 它的主要作用与功能 交互式情感表达: 回忆挂载:你可以上传本地照片,这些照片会像装饰品一样挂在树上,或者像星云一样环绕在树周围。 魔法操控:握拳时粒子迅速聚拢,构成一棵挺拔的圣诞树;张开手掌时,树会瞬间炸裂成星光和雪花,照片随之起舞;捏合手指时视线会拉近,让你特写观察某一张选中的照片。 节日氛围装饰: 在白色背景下,这棵树呈现出一种现代艺术感。600片雪花在3D空间里缓缓飘落,提供视觉深度。树上的彩色粒子和白色星灯会周期性地呼吸闪烁,模拟真实灯串的效果。 3. 如何使用 启动:运行代码后,允许浏览器开启摄像头。 装扮:点击上传照片按钮,选择温馨合照。 互动:对着摄像头挥动手掌可以旋转圣诞树;五指张开让照片和树化作满天星辰;攥紧拳头让它们重新变回挺拔的树。 4. 适用场景 个人纪念:作为一个独特的数字相册,在节日陪伴自己。 浪漫惊喜:录制一段操作手势让照片绽放的视频发给朋友。 技术展示:作为WebGL与AI结合的案例,展示前端开发的潜力。
【顶级EI复现】计及连锁故障传播路径的电力系统 N-k 多阶段双层优化及故障场景筛选模型(Matlab代码实现)内容概要:本文提出了一种计及连锁故障传播路径的电力系统N-k多阶段双层优化及故障场景筛选模型,并提供了基于Matlab的代码实现。该模型旨在应对复杂电力系统中可能发生的N-k故障(即多个元件相继失效),通过构建双层优化框架,上层优化系统运行策略,下层模拟故障传播过程,从而实现对关键故障场景的有效识别与筛选。研究结合多阶段动态特性,充分考虑故障的时序演化与连锁反应机制,提升了电力系统安全性评估的准确性与实用性。此外,模型具备良好的通用性与可扩展性,适用于大规模电网的风险评估与预防控制。; 适合人群:电力系统、能源互联网及相关领域的高校研究生、科研人员以及从事电网安全分析、风险评估的工程技术人员。; 使用场景及目标:①用于电力系统连锁故障建模与风险评估;②支撑N-k故障场景的自动化筛选与关键脆弱环节识别;③为电网规划、调度运行及应急预案制定提供理论依据和技术工具;④服务于高水平学术论文复现与科研项目开发。; 阅读建议:建议读者结合Matlab代码深入理解模型构建细节,重点关注双层优化结构的设计逻辑、故障传播路径的建模方法以及场景削减技术的应用,建议在实际电网数据上进行测试与验证,以提升对模型性能与适用边界的认知。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值