tf.reduce_sum()_tf.reduce_mean()_tf.reduce_max()

本文详细解析了TensorFlow中的Reduce函数,包括tf.reduce_sum、tf.reduce_max和tf.reduce_mean等,介绍了它们如何用于压缩求和、求最大值和求平均值的操作,以及参数input_tensor、reduction_indices和keepdims的具体作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.reduce_sum(input_tensor,axis=None,keepdims=None,name=None,reduction_indices=None,keep_dims=None)

Args:

  • input_tensor: The tensor to reduce. Should have numeric type. #输入
  • axis: The dimensions to reduce. If None (the default), reduces all dimensions. Must be in the range (rank(input_tensor), rank(input_tensor)).#取0第一维,取1第二维,取-1最后一维
  • keepdims: If true, retains reduced dimensions with length 1.#按照原来的维度
  • name: A name for the operation (optional).
  • reduction_indices: The old (deprecated) name for axis.#axis的原来的名字
  • keep_dims: Deprecated alias for keepdims.

     

  • reduce_sum应该理解为压缩求和 用于降维

    求最大值tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None)

    求平均值tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)

    参数1--input_tensor:待求值的tensor。

    参数2--reduction_indices:在哪一维上求解。

    参数(3)(4)可忽略

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值