angularJS中批量提交请求的batch.js(2)

本文介绍了一种使用OData和jQuery库简化数据批处理操作的方法,包括如何创建批量请求构建器,如何将请求组合成批量请求,以及如何从服务接收并解析响应。重点展示了postBatch、createBatchBuilder和getOrderLines等关键函数的应用。
/// <reference path="./datajs-1.1.3.min.js" />

// This is a helper module that contains functions to make building and sending requests to our service easier.
var ODataEFBatchSample = (function (odata, $) {
    return {

        // Posts a batch request to the service endpoint.
        postBatch: function (requests) {
            // Create a "TaskCompletionSource" to wrap the result of the callbacks to datajs into a promise interface.
            var deferred = $.Deferred();

            // Fulfills the promise when the call to datajs is successful.
            var success = function (data, response) {
                deferred.resolve(data);
            };

            // Rejects the promise when the call to datajs throws an error.
            var error = function (error, response) {
                deferred.reject(error);
            };

            // Creates a batch request with the requests passed as argument.
            var batchRequest = {
                requestUri: "/odata/$batch",
                method: "POST",
                data: requests
            };

            // Sends the request to the service asynchonously.
            odata.request(batchRequest, success, error, odata.batchHandler);

            // Returns a promise that will be fulfilled or rejected when the call to the service returns.
            return deferred.promise();
        },

        // Creates a batch builder to make building batch requests easier.
        createBatchBuilder: function () {
            var data = {
                __batchRequests: []
            };

            builder = {};

            // Adds a changeset to the batch request and returns a changeSetBuilder in order to add requests
            // to the changeset.
            builder.addChangeSet = function () {
                var changeset = { __changeRequests: [] };
                data.__batchRequests.push(changeset);

                var changeSetBuilder = {};

                // Adds a request at the end of the current changeset and returns the changeSetBuilder to allow adding
                // more requests to the changeSet.
                changeSetBuilder.addRequest = function (request) {
                    var requests = changeset.__changeRequests;
                    requests.push(request);
                    return changeSetBuilder;
                };

                return changeSetBuilder;
            };

            // Returns a batch request containing the changesets added using the builder.
            builder.getBatchRequest = function () {
                return data;
            };

            return builder;
        },

        // Queries the OData service for orders whose CustomerId is equal to the one indicated by key.
        getOrderLines: function (key) {
            // Create a "TaskCompletionSource" to wrap the result of the callbacks to datajs into a promise interface.
            var deferred = $.Deferred();

            // Fulfills the promise when the call to datajs is successful.
            var success = function (data) {
                deferred.resolve(data);
            };

            // Rejects the promise when the call to datajs throws an error.
            var error = function (error) {
                deferred.reject(error);
            };

            // Sends the request to the service asynchonously.
            OData.read('/odata/Orders?$filter=CustomerId eq ' + key, success, error);

            // Returns a promise that will be fulfilled or rejected when the call to the service returns.
            return deferred.promise();
        }
    };
})(OData, jQuery);

var getResponses = function (data) {
    var batchResponses = data.__batchResponses;
    var changeSet = batchResponses[0];
    return changeSet.__changeResponses;
};


postBatch:提交批量请求

createBatchBuilder:收集请求,组成批量请求集合

getResponses:收到请求时返回的响应

【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)内容概要:本文提出了一种基于融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)优化变分模态分解(VMD)参数,并结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的轴承故障诊断模型。该方法利用西储大学公开的轴承数据集进行验证,通过OCSSA算法优化VMD的分解层数K和惩罚因子α,有效提升信号分解精度,抑制模态混叠;随后利用CNN提取故障特征的空间信息,BiLSTM捕捉时间序列的动态特征,最终实现高精度的轴承故障分类。整个诊断流程充分结合了信号预处理、智能优化与深度学习的优势,显著提升了复杂工况下轴承故障诊断的准确性与鲁棒性。; 适合人群:具备一定信号处理、机器学习及MATLAB编程基础的研究生、科研人员及从事工业设备故障诊断的工程技术人员。; 使用场景及目标:①应用于旋转机械设备的智能运维与故障预警系统;②为轴承等关键部件的早期故障识别提供高精度诊断方案;③推动智能优化算法与深度学习在工业信号处理领域的融合研究。; 阅读建议:建议读者结合MATLAB代码实现,深入理解OCSSA优化机制、VMD参数选择策略以及CNN-BiLSTM网络结构的设计逻辑,通过复现实验掌握完整诊断流程,并可进一步尝试迁移至其他设备的故障诊断任务中进行验证与优化。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值