Canopy算法原理

Canopy聚类算法是一个将对象分组到类的简单、快速、精确地方法。每个对象用多维特征空间里的一个点来表示。这个算法使用一个快速近似距离度量和两个距离阈值 T1>T2来处理。

基本的算法是:从一个点集合开始并且随机删除一个,创建一个包含这个点的Canopy,并在剩余的点集合上迭代。对于每个点,如果它与这个Canopy的距离小于T1,那么就将这个点就加入这个Canopy中。除此之外,如果这个距离<T2,那么就将这个点从这个集合中删除。这样非常靠近原点的点将避免所有的未来处理。这个算法循环到初始集合为空为止,聚集一个集合的Canopies,每个可以包含一个或者多个点。每个点可以包含在多于一个的Canopy中。

while(list不为空)

{

1:随机从list中删除一个点并创建这个点的Canopy;

2:从list中剩余的点的第一个开始,如果这个点与Canopy的距离<T1,则将这个点加入到Canopy;如果这个点与Canopy的距离<T2,

那么将这个点从list中删除。

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值