典型树形递归题,主要是要处理好根节点为null,叶子节点的情况
package Level3;
import Utility.TreeNode;
/**
* Sum Root to Leaf Numbers
*
* Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3 which represents the number 123.
Find the total sum of all root-to-leaf numbers.
For example,
1
/ \
2 3
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Return the sum = 12 + 13 = 25.
*
*/
public class S131 {
public static void main(String[] args) {
TreeNode root = new TreeNode(1);
TreeNode n1 = new TreeNode(2);
TreeNode n2 = new TreeNode(3);
root.left = n1;
root.right = n2;
System.out.println(sumNumbers(root));
}
public static int sumNumbers(TreeNode root) {
StringBuffer sb = new StringBuffer();
return rec(root, sb);
}
public static int rec(TreeNode root, StringBuffer sb){
if(root==null){
return 0;
}
// 处理叶子节点情况
if(root.left==null && root.right==null){
// 临时添加入叶子节点然后再删除恢复现场
int val = Integer.parseInt(sb.append(root.val).toString());
sb.deleteCharAt(sb.length()-1);
return val;
}
sb.append(root.val);
int a = rec(root.left, sb);
int b = rec(root.right, sb);
sb.deleteCharAt(sb.length()-1);
return a+b;
}
}
Second try:
public static int sumNumbers(TreeNode root) {
return rec2(root, 0);
}
public static int rec2(TreeNode root, int n){
if(root == null){
return 0;
}
n = n*10 + root.val;
if(root.left==null && root.right==null){
return n;
}
return rec2(root.left, n) + rec2(root.right, n);
}
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int sumNumbers(TreeNode root) {
int[] sum = new int[1];
recAdd(root, sum, 0);
return sum[0];
}
public void recAdd(TreeNode root, int[] sum, int path) {
if(root == null) {
return;
}
if(root.left==null && root.right==null){
path = path*10 + root.val;
sum[0] += path;
return;
}
path = path*10 + root.val;
recAdd(root.left, sum, path);
recAdd(root.right, sum, path);
}
}