Leetcode 79.单词搜索

本文介绍了一种算法,用于在一个二维网格中查找特定单词是否存在。单词必须由相邻单元格的字母构成,且同一单元格的字母不可重复使用。文章详细解释了回溯版深度优先搜索(DFS)的实现过程。

给定一个二维网格和一个单词,找出该单词是否存在于网格中。

单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。

示例:

board =
[
[‘A’,‘B’,‘C’,‘E’],
[‘S’,‘F’,‘C’,‘S’],
[‘A’,‘D’,‘E’,‘E’]
]

给定 word = “ABCCED”, 返回 true.
给定 word = “SEE”, 返回 true.
给定 word = “ABCB”, 返回 false.

tips: 回溯版dfs。同剑指offer12

class Solution {
public:
	bool dfs(vector<vector<char>>& board, vector<vector<bool>>& visited,int x,int y,int pos,string &word) {
		if(!(x>=0 && x<board.size()&&y>=0&&y<board[0].size())||board[x][y]!=word[pos]||visited[x][y]==true) {
			return false;
		}
		if(pos==word.size()-1) {
			return true;
		}
		visited[x][y]=true;
		bool res=dfs(board,visited,x+1,y,pos+1,word)||
				dfs(board,visited,x-1,y,pos+1,word)||
				dfs(board,visited,x,y-1,pos+1,word)||
				dfs(board,visited,x,y+1,pos+1,word);
		if(!res) {
			visited[x][y]=false;
		}
		return res;
	}
    bool exist(vector<vector<char>>& board, string word) {
		if(board.size()==0) {
			return false;
		}
		vector<vector<bool>> visited(board.size(),vector<bool>(board[0].size(),false));
        for (int i = 0; i < board.size(); i++)
		{
			for (int j = 0; j < board[0].size(); j++)
			{
				bool res=dfs(board,visited,i,j,0,word);
				if(res) {
					return res;
				}
			}
		}
		return false;
    }
};
本指南详细阐述基于Python编程语言结合OpenCV计算机视觉库构建实时眼部状态分析系统的技术流程。该系统能够准确识别眼部区域,并对眨眼动作与持续闭眼状态进行判别。OpenCV作为功能强大的图像处理工具库,配合Python简洁的语法特性与丰富的第三方模块支持,为开发此类视觉应用提供了理想环境。 在环境配置阶段,除基础Python运行环境外,还需安装OpenCV核心模块与dlib机器学习库。dlib库内置的HOG(方向梯度直方图)特征检测算法在面部特征定位方面表现卓越。 技术实现包含以下关键环节: - 面部区域检测:采用预训练的Haar级联分类器或HOG特征检测器完成初始人脸定位,为后续眼部分析建立基础坐标系 - 眼部精确定位:基于已识别的人脸区域,运用dlib提供的面部特征点预测模型准确标定双眼位置坐标 - 眼睑轮廓分析:通过OpenCV的轮廓提取算法精确勾勒眼睑边缘形态,为状态判别提供几何特征依据 - 眨眼动作识别:通过连续帧序列分析眼睑开合度变化,建立动态阈值模型判断瞬时闭合动作 - 持续闭眼检测:设定更严格的状态持续时间与闭合程度双重标准,准确识别长时间闭眼行为 - 实时处理架构:构建视频流处理管线,通过帧捕获、特征分析、状态判断的循环流程实现实时监控 完整的技术文档应包含模块化代码实现、依赖库安装指引、参数调优指南及常见问题解决方案。示例代码需具备完整的错误处理机制与性能优化建议,涵盖图像预处理、光照补偿等实际应用中的关键技术点。 掌握该技术体系不仅有助于深入理解计算机视觉原理,更为疲劳驾驶预警、医疗监护等实际应用场景提供了可靠的技术基础。后续优化方向可包括多模态特征融合、深度学习模型集成等进阶研究领域。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值