728. Self Dividing Numbers

本文介绍了一种用于找出指定范围内所有自除数的算法实现。自除数是指能被其包含的所有数字整除的数,且不能包含数字0。文中提供了C++及Java两种语言的代码示例,通过迭代检查每个数是否符合自除数定义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A self-dividing number is a number that is divisible by every digit it contains.

For example, 128 is a self-dividing number because 128 % 1 == 0, 128 % 2 == 0, and 128 % 8 == 0.

Also, a self-dividing number is not allowed to contain the digit zero.

Given a lower and upper number bound, output a list of every possible self dividing number, including the bounds if possible.

Example 1:
Input:
left = 1, right = 22
Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]
Note:

The boundaries of each input argument are 1 <= left <= right <= 10000.

//C++
#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
    vector<int> selfDividingNumbers(int left, int right) 
    {
        vector<int>res;
        for (int i = left; i <= right; i++) 
        {
            if (dividingNumber(i))
                res.push_back(i);
        }
        return res;
    }
    bool dividingNumber(int num)
    {
        for (int n = num; n > 0; n /= 10)
        {
            if (!(n % 10) || num % (n % 10))
                return false;
            return true;
        }   
    }
};
void main() 
{
    Solution *sl= new Solution();
    vector<int>ivec;
    ivec=sl->selfDividingNumbers(1, 22);
    for (auto i : ivec)
        cout << i << " ";
    delete sl;
}
//java
class Solution 
{
    public List<Integer> selfDividingNumbers(int left, int right) 
    {
        List<Integer> res = new ArrayList<>();
        for (int i = left; i <= right; i++)
            if (dividingNumber(i)) 
                res.add(i); //
        return res;
    }

    boolean dividingNumber(int num) 
    {
        for (int n = num; n > 0; n /= 10)
          if (n % 10 == 0 || num % (n % 10) != 0)
                return false;
          return true;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值