A self-dividing number is a number that is divisible by every digit it contains.
For example, 128 is a self-dividing number because 128 % 1 == 0, 128 % 2 == 0, and 128 % 8 == 0.
Also, a self-dividing number is not allowed to contain the digit zero.
Given a lower and upper number bound, output a list of every possible self dividing number, including the bounds if possible.
Example 1:
Input:
left = 1, right = 22
Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]
Note:
The boundaries of each input argument are 1 <= left <= right <= 10000.
//C++
#include<iostream>
#include<vector>
using namespace std;
class Solution {
public:
vector<int> selfDividingNumbers(int left, int right)
{
vector<int>res;
for (int i = left; i <= right; i++)
{
if (dividingNumber(i))
res.push_back(i);
}
return res;
}
bool dividingNumber(int num)
{
for (int n = num; n > 0; n /= 10)
{
if (!(n % 10) || num % (n % 10))
return false;
return true;
}
}
};
void main()
{
Solution *sl= new Solution();
vector<int>ivec;
ivec=sl->selfDividingNumbers(1, 22);
for (auto i : ivec)
cout << i << " ";
delete sl;
}
//java
class Solution
{
public List<Integer> selfDividingNumbers(int left, int right)
{
List<Integer> res = new ArrayList<>();
for (int i = left; i <= right; i++)
if (dividingNumber(i))
res.add(i); //
return res;
}
boolean dividingNumber(int num)
{
for (int n = num; n > 0; n /= 10)
if (n % 10 == 0 || num % (n % 10) != 0)
return false;
return true;
}
}