给定四条线段,每条线段的端点坐标为一个坐标。我们需要判断这四条线段是否构成一个矩形。
示例:
输入:segments[] = [(4, 2), (7, 5),
(2, 4),(4, 2),
(2, 4),(5, 7),
(5, 7),(7, 5)]
输出:是
给定这些线段,制作一个长度为 3X2 的矩形。
输入:segment[] = [(7, 0), (10, 0),
(7,0),(7,3),
(7, 3),(10, 2),
(10,2),(10,0)]
输出:否
这些部分不能组成矩形。
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。
上述示例如下图所示。

这个问题主要是如何检查给定的四个点是否形成正方形:
JavaScript 检查给定的四个点是否形成正方形:JavaScript 检查给定的四个点是否形成正方形(Check if given four points form a square)-优快云博客
C# 检查给定的四个点是否形成正方形:C# 检查给定的四个点是否形成正方形(Check if given four points form a square)-优快云博客
Python 检查给定的四个点是否形成正方形:Python 检查给定的四个点是否形成正方形(Check if given four points form a square)-优快云博客
Java 检查给定的四个点是否形成正方形:Java 检查给定的四个点是否形成正方形(Check if given four points form a square)-优快云博客
C++ 检查给定的四个点是否形成正方形:C++ 检查给定的四个点是否形成正方形(Check if given four points form a square)-优快云博客
我们可以利用矩形的性质来解决这个问题。首先,我们检查线段的唯一端点总数,如果这些点的数量不等于4,则该线段不能构成矩形。然后,我们检查所有点对之间的距离,最多应有3个不同的距离,一个用于对角线,两个用于边。最后,我们将检查这三个距离之间的关系。对于构成矩形的线段,这些距离应满足勾股定理,因为矩形的边和对角线构成一个直角三角形。如果它们满足上述条件,则我们将由线段构成的多边形标记为矩形,否则不是。
示例代码:
# Python program to check whether it is possible
# to make a rectangle from 4 segments
N = 4
# Utility method to return square of distance
# between two points
def getDis(a, b):
return (a[0] - b[0])*(a[0] - b[0]) + (a[1] - b[1])*(a[1] - b[1])
# method returns true if line Segments make
# a rectangle
def isPossibleRectangle(segments):
st = set()
# putting all end points in a set to
# count total unique points
for i in range(N):
st.add((segments[i][0], segments[i][1]))
st.add((segments[i][2], segments[i][3]))
# If total unique points are not 4, then
# they can't make a rectangle
if len(st) != 4:
return False
# dist will store unique 'square of distances'
dist = set()
# calculating distance between all pair of
# end points of line segments
for it1 in st:
for it2 in st:
if it1 != it2:
dist.add(getDis(it1, it2))
# if total unique distance are more than 3,
# then line segment can't make a rectangle
if len(dist) > 3:
return False
# copying distance into array. Note that set maintains
# sorted order.
distance = []
for x in dist:
distance.append(x)
# Sort the distance list, as set in python, does not sort the elements by default.
distance.sort()
# If line seqments form a square
if len(dist) ==2 :
return (2*distance[0] == distance[1])
# distance of sides should satisfy pythagorean
# theorem
return (distance[0] + distance[1] == distance[2])
# Driver code to test above methods
segments = [
[4, 2, 7, 5],
[2, 4, 4, 2],
[2, 4, 5, 7],
[5, 7, 7, 5]
]
if(isPossibleRectangle(segments) == True):
print("Yes")
else:
print("No")
# The code is contributed by Nidhi goel.
输出:
Yes
时间复杂度: O(n² logn)
辅助空间: O(n)
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。
350

被折叠的 条评论
为什么被折叠?



