我们有四条线段作为其端点的一对坐标。我们需要判断这四条线段是否构成矩形。
示例:
输入:segment[] = [(4, 2), (7, 5),
(2, 4), (4, 2),
(2, 4), (5, 7),
(5, 7), (7, 5)]
输出:
是 给定这些线段,可以组成一个长度为 3X2 的矩形。
输入:segment[] = [(7, 0), (10, 0),
(7, 0), (7, 3),
(7, 3), (10, 2),
(10, 2), (10, 0)]
输出:否
这些线段不能组成矩形。
上述示例如下所示:
这个问题主要是:如何检查给定的四个点是否形成一个正方形
JavaScript:JavaScript 如何检查给定的四个点是否形成一个正方形(How to check if given four points form a square)-优快云博客
C#:C# 如何检查给定的四个点是否形成一个正方形(How to check if given four points form a square)_四个坐标判断正方形-优快云博客
Python:Python 如何检查给定的四个点是否形成一个正方形(How to check if given four points form a square)-优快云博客
Java:Java 如何检查给定的四个点是否形成一个正方形(How to check if given four points form a square)_算法题目 四个点检验正方形-优快云博客
C++:C++ 如何检查给定的四个点是否形成一个正方形(How to check if given four points form a square)_顺时针读入一个四边形的各点a,b,c,d的x-y值,并判断它是否能构成正方形(zhengfangx-优快云博客
我们可以通过使用矩形的属性来解决这个问题。首先,我们检查线段的唯一端点总数,如果这些点的数量不等于 4,则线段不能构成矩形。然后我们检查所有点对之间的距离,最多应该有 3 个不同的距离,一个用于对角线,两个用于边,最后我们将检查这三个距离之间的关系,对于构成矩形的线段,这些距离应该满足勾股关系,因为矩形的边和对角线构成直角三角形。如果它们满足上述条件,那么我们将线段构成的多边形标记为矩形,否则不是。
示例代码:
# Python program to check whether it is possible
# to make a rectangle from 4 segments
N = 4
# Utility method to return square of distance
# between two points
def getDis(a, b):
return (a[0] - b[0])*(a[0] - b[0]) + (a[1] - b[1])*(a[1] - b[1])
# method returns true if line Segments make
# a rectangle
def isPossibleRectangle(segments):
st = set()
# putting all end points in a set to
# count total unique points
for i in range(N):
st.add((segments[i][0], segments[i][1]))
st.add((segments[i][2], segments[i][3]))
# If total unique points are not 4, then
# they can't make a rectangle
if len(st) != 4:
return False
# dist will store unique 'square of distances'
dist = set()
# calculating distance between all pair of
# end points of line segments
for it1 in st:
for it2 in st:
if it1 != it2:
dist.add(getDis(it1, it2))
# if total unique distance are more than 3,
# then line segment can't make a rectangle
if len(dist) > 3:
return False
# copying distance into array. Note that set maintains
# sorted order.
distance = []
for x in dist:
distance.append(x)
# Sort the distance list, as set in python, does not sort the elements by default.
distance.sort()
# If line seqments form a square
if len(dist) ==2 :
return (2*distance[0] == distance[1])
# distance of sides should satisfy pythagorean
# theorem
return (distance[0] + distance[1] == distance[2])
# Driver code to test above methods
segments = [
[4, 2, 7, 5],
[2, 4, 4, 2],
[2, 4, 5, 7],
[5, 7, 7, 5]
]
if(isPossibleRectangle(segments) == True):
print("Yes")
else:
print("No")
# The code is contributed by Nidhi goel.
输出:
是
时间复杂度:
辅助空间: O(n)
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。