机器学习特征选择-t检验

在特征选择的过程中通过计算检验统计量值,比较特征之间的统计量的大小,并降序排列,选取统计值较高的特征,从而起到去除差别小的特征(此差别小的特征难以区分不同的额类别)的目的。

以t检验(Student's t test)为例:

假设检验

通过比较两类样本的随机变化,通过计算其p值决定是否拒绝零假设,也即是说:通过计算p值,若p值小于某一阈值则认为两个样本具有显著差异,两个样本是不同的,此时拒绝零假设。

1、建立假设

H0:μ = μ0 (零假设null hypothesis)也即是假设样本无差别

H1:μ ≠ μ0(备择假设alternative hypothesis)

2、计算统计量

单总体:检验一个样本平均数已知的总体平均数的差异是否具有显著性,

   

双总体:检验两个样本平均数和它各自所表示的总体的差异是否具有显著性

  •     独立样本t检验:实验组之间无相关存在

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heda3

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值