训练
import torch
from torch import nn, optim
import torch.nn.functional as F
# 检查是否有GPU可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 定义 RNN 模型
class RNNModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=1):
super(RNNModel, self).__init__()
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
out, _ = self.rnn(x)
out = out[:, -1, :] # 取最后一个时间步的输出
out = self.fc(out)
return F.log_softmax(out, dim=1)
# 模型参数
input_size = 28 # 假设输入为28维,例如MNIST的每行像素
hidden_size = 128
output_size = 10 # 例如10个分类
num_layers = 1
learning_rate = 0.001
epochs = 5
# 创建模型
model = RNNModel(input_size, hidden_size, output_size, num_layers).to(device)
optimizer = optim.Adam(mode