UVa10720 ( Graph Construction)(判断是否可化为简单图)

该博客介绍了如何解决UVa10720问题,内容涉及判断一个图是否可以转化为简单图的算法,与杭电2454题目高度相似。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Graph is a collection of edges E and vertices V. Graph has a wide variety of applications in computer.
There are different ways to represent graph in computer. It can be represented by adjacency matrix or
by adjacency list. There are some other ways to represent graph. One of them is to write the degrees
(the numbers of edges that a vertex has) of each vertex. If there are n vertices then n integers can
represent that graph. In this problem we are talking about simple graph which does not have same
endpoints for more than one edge, and also does not have edges with the same endpoint.
Any graph can be represented by n number of integers. But the reverse is not always true. If you
are given n integers, you have to find out whether this n numbers can represent the degrees of n vertices
of a graph.
Input
Each line will start with the number n (≤ 10000). The next n integers will represent the degrees of n
vertices of the graph. A ‘0’ input for n will indicate end of input which should not be processed.
Output
If the n integers can represent a graph then print ‘Possible’. Otherwise print ‘Not possible’. Output
for each test case should be on separate line.
Sample Input
4 3 3 3 3
6 2 4 5 5 2 1
5 3 2 3 2 1
0
Sample Output
Possible
Not possible

Not possible


这道题和杭电2454几乎一模一样。

#include<stdio.h>
#include<algorithm>
using namespace std;
int a[10010];
int cmp(int x,int y)
{
	return x>y;
}
int main()
{
	int n,sum,flag;
	while(scanf("%d",&n),n)
	{
		sum=flag=0;
		for(int i=0;i<n;i++)
		{
		    scanf("%d",&a[i]);
		    sum+=a[i];
		}
		sort(a,a+n,cmp);
		if(sum&1||a[0]>=n)
		{
			printf("Not possible\n");
			continue;
		}
		for(int i=0;i<n-1;i++)
		{
			sort(a+i,a+n,cmp);
			for(int j=i+1;j<=i+a[i];j++)
			{
				a[j]--;
				if(a[j]<0)
				{
					flag=1;
					break;
				}
			}
			if(flag)
			    break;
		}
		if(a[n-1]!=0)
		    flag=1;
		printf(flag?"Not possible\n":"Possible\n");
		
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值