HDOJ2199Can you solve this equation?(二分)

本文介绍了一种解决特定多项式方程8*x^4+7*x^3+2*x^2+3*x+6=Y的方法,当Y的绝对值小于等于1e10时,在0到100之间寻找方程的解。使用二分查找法逼近解,并提供了实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Can you solve this equation?

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 14379    Accepted Submission(s): 6421


Problem Description
Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;
Now please try your lucky.
 

Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
 

Output
For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
 

Sample Input
2 100 -4
 

Sample Output
1.6152 No solution!
 

Author
Redow



注意精度即可。

#include<stdio.h>
#include<math.h> 
double fx(double x)
{
	return 8*pow(x,4)+7*pow(x,3)+2*pow(x,2)+3*x+6;
} 
int main()
{
	int test;
	double k,j,y;
	scanf("%d",&test);
	while(test--)
	{
		scanf("%lf",&y);
		if(y>=fx(0)&&y<=fx(100))
		{
			k=0;
			j=100;
			while(j-k>=1e-7)
			{
				if(fx((k+j)/2)<y)
					k=(k+j)/2;
				else
				    j=(k+j)/2;
			}
			printf("%.4lf\n",(j+k)/2);
		}
		else
		printf("No solution!\n");
	}
	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值