A Knight's Journey
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 37150 | Accepted: 12594 |
Description

The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
Problem
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
Input
The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes
how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves
followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
If no such path exist, you should output impossible on a single line.
If no such path exist, you should output impossible on a single line.
Sample Input
3 1 1 2 3 4 3
Sample Output
Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4
题意:判断一个骑士是否能走完整个棋盘上的点,按国际象棋中马的规则走,输出字典序最小的序列~
国际象棋盘上点的横坐标是A,B,C,D。。。纵坐标是1,2,3,4。。。
既然要走完所有的点,并且保证当前要走的点是字典序最小的点。所以每次都要从左上角那点开始走
用int s[8][2]={-2,-1,-2,1,-1,-2,-1,2,1,-2,1,2,2,-1,2,1}; 来实现搜索过程,并且
保证输出的是字典序最小的序列~ 搜索到的第一路径就是骑士所走的路径。
用path[][0]用来存储路径的横坐标,path[][1]来存储路径的纵坐标。
#include<stdio.h> #include<string.h> int vis[30][30]; int path[30][2]; int s[8][2]={-2,-1,-2,1,-1,-2,-1,2,1,-2,1,2,2,-1,2,1}; int a,b,flag; void dfs(int x,int y,int ans) { if(ans==a*b) { flag=1; for(int i=0;i<ans;i++) { printf("%c%d",path[i][0]+'A',path[i][1]+1); } printf("\n"); } for(int i=0;i<8;i++) { int m=x+s[i][0]; int n=y+s[i][1]; if(m>=0&&m<b&&n>=0&&n<a&&!flag&&!vis[m][n]) { vis[m][n]=1; path[ans][0]=m; path[ans][1]=n; dfs(m,n,ans+1); vis[m][n]=0; } } } int main() { int test,kase=1; scanf("%d",&test); while(test--) { scanf("%d%d",&a,&b); memset(vis,0,sizeof(vis)); memset(path,0,sizeof(path)); flag=0; vis[0][0]=1; printf("Scenario #%d:\n",kase++); dfs(0,0,1); if(!flag) printf("impossible\n"); printf("\n"); } }
用java语言实现上述过程,思想和代码基本上一样,就是换一下输入输出和一些格式~
import java.util.Scanner; public class Main { private static int[][] a = { { -2, -1 }, { -2, 1 }, { -1, -2 }, { -1, 2 }, { 1, -2 }, { 1, 2 }, { 2, -1 }, { 2, 1 } }; private static int[][] hang=new int[30][2]; private static Boolean[][] visit=new Boolean[30][30]; private static int x,y; private static Boolean flag; public static void main(String[] args) { Scanner s = new Scanner(System.in); int num=s.nextInt(); int key=1; while (num-->0) { flag=false; x=s.nextInt(); y=s.nextInt(); System.out.println("Scenario #"+key+++":"); for (int i = 0; i < 30; i++) { for (int j = 0; j < 30; j++) { visit[i][j]=false; } } hang[0][0]=0; hang[0][1]=0; visit[0][0]=true; dfs(0,0,1); if (!flag) { System.out.println("impossible"); } //System.out.println(); if(num!=0){ System.out.println(); } } } public static void dfs(int m,int n,int step){ if(step==x*y){ flag=true; for(int i=0;i<step;i++){ System.out.print((char)(hang[i][0]+'A')); System.out.print(hang[i][1]+1); } System.out.println(); } for(int i=0;i<8;i++){ int h=m+a[i][0]; int l=n+a[i][1]; if(h<y&&h>=0&&l>=0&&l<x&&!flag&&!visit[h][l]){ hang[step][0]=h; hang[step][1]=l; visit[h][l]=true; dfs(h,l,step+1); visit[h][l]=false; } } } }