Capacitated Facility Location Problem
问题描述
Suppose there are n facilities and m customers. We wish to choose:
- which of the n facilities to open
- the assignment of customers to facilities
Note:
- The objective is to minimize the sum of the opening cost and the assignment cost.
- The total demand assigned to a facility must not exceed its capacity.
问题建模:
Let
I I I={1,…, I I I}:the set of f a c i l i t i e s facilities facilities
J J J={1,…, J J J}:the set of c u s t o m e r s customers customers
d j d_j dj: c u s t o m e r customer customer j j j 's D e m a n d Demand Demand, j ∈ J j∈J j∈J
V i V_i Vi: f a c i l i t y facility facility i i i 's C a p a c i t y Capacity Capacity, i ∈ I i∈I i∈I
C i C_i Ci: f a c i l i t y facility facility i i i 's O p e n i n g C o s t OpeningCost OpeningCost, i ∈ I i∈I i∈I
A i j A_{ij} Aij: f a c i l i t y facility facility i i i 's A s s i g n m e n t C o s t AssignmentCost AssignmentCost for c u s t o m e r customer customer j j j, i ∈ I i∈I i∈I, j ∈ J j∈J j∈J
For every f a c i l i t y facility facility i i i, i ∈ I i∈I i∈I, define the following notations:
y i = { 1 i f . f a c i l i t y . i . i s . o p e n e d 0 o t h e r w i s e y_i = \begin{cases} 1 & if.facility.i.is.opened \\ 0 & otherwise \end{cases} yi={
10if.facility.i.is.openedotherwise
For every f a c i l i t y facility facility i i i, i ∈ I i∈I i∈I; c u s t o m e r customer customer j j j, j ∈ J j∈J j∈J;
x i j = { 1 i f . f a c i l i t y . i . i s . a s s i g n e d . f o r . c u s t o m e r . j 0 o t h e r w i s e x_{ij} = \begin{cases} 1 & if.facility.i.is.assigned.for.customer.j\\ 0 & otherwise \end{cases} xij={
10if.facility.i.is.assigned.for.customer.jotherwise
Then the Capacitated Facility Location Problem may be written:
∑ j ∈ J d j x i j ≤ V i y i , i ∈ I \sum_{j∈J}d_jx_{ij} \leq V_iy_i,i∈I