【LeetCode】617.Merge Two Binary Trees(Easy)解题报告

本文针对LeetCode上的合并二叉树问题提供了一种递归解决方案。当两棵树重叠时,将节点值相加作为新节点值;若不重叠,则使用非空节点值。此方法从根节点开始合并,时间复杂度为O(n),空间复杂度也为O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【LeetCode】617.Merge Two Binary Trees(Easy)解题报告

题目地址:https://leetcode.com/problems/merge-two-binary-trees/description/
题目描述:

  Given two binary trees and imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not.

  You need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree.

Example 1:
Input: 
    Tree 1                     Tree 2                  
          1                         2                             
         / \                       / \                            
        3   2                     1   3                        
       /                           \   \                      
      5                             4   7                  
Output: 
Merged tree:
         3
        / \
       4   5
      / \   \ 
     5   4   7
Note: The merging process must start from the root nodes of both trees.

Solution:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 time : O(n)
 space : O(n)
 */
class Solution {
    public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
        if(t1 == null) return t2;
        if(t2 == null) return t1;
        TreeNode newNode = new TreeNode(t1.val + t2.val);
        newNode.left = mergeTrees(t1.left,t2.left);
        newNode.right = mergeTrees(t1.right,t2.right);
        return newNode;
    }
}

Date:2018年3月17日

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值