机器学习优化算法之梯度下降
1、梯度下降
梯度下降是一种非常通用的优化算法,它能够很好地解决一系列问题。梯度下降的整体思路是通过的迭代来逐渐调整参数使得损失函数达到最小值。
假设你迷失在了大山中,你只能感受到自己脚下的坡度。为了最快到达山底,一个最好的方法就是沿着坡度最陡的地方下山。这其实就是梯度下降所做的:它计算误差函数关于参数向量
的局部梯度,同时它沿着梯度下降的方向进行下一次迭代。当梯度值为零的时候,就达到了误差函数最小值 。
具体来说,开始时,需要选定一个随机的
(这个值称为随机初始值),然后逐渐去改进它,每一次变化一小步,每一步都试着降低损失函数(例如:均方差损失函数),直到算法收敛到一个最小值,如图:

在梯度下降中一个重要的参数是步长,超参数学习率的值决定了步长的大小。如果学习率太小,必须经过多次迭代,算法才能收敛,这是非常耗时的;

另一方面,如果学习率太大,你将跳过最低点,到达山谷的另一面,可能下一次的值比上一次还要大。这可能使的算法是发散的,函数值变得越来越大,永远不可能找到一个好的答案。

本文详细介绍了梯度下降法,包括梯度下降的基本思想、批量梯度下降、随机梯度下降和小批量梯度下降。讨论了学习率的影响、局部最小值问题以及各种梯度下降算法在不同场景下的适用性和表现。通过比较,揭示了在机器学习中如何选择合适的优化策略。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



