本博文主要讲解下基于cuda的矩阵相乘,cuda特别擅长的就是矩阵乘法,而且也比较容易实现。通过矩阵乘法的实现,可以比较容易理解cuda的核心思想。网上也有很多基于cuda实现的矩阵乘法,但是感觉都不完成,要不就是有错,本文给出的代码都是经过验证可行的,希望能够帮助到大家。
矩阵乘法实现方式一:矩阵乘法的逐点实现方式,具体如下图所示
对应实现代码:
- #include <stdio.h>
- #include <stdlib.h>
- #include <cuda_runtime.h>
-
-
- __global__ void MatMul(int *M,int *N,int *P,int width)
- {
- int x = threadIdx.x;
- int y = threadIdx.y;
-
- float Pervalue = 0;
-
- float elem1 = 0.0,elem2 = 0.0,value = 0.0;
- for(int i = 0;i < width;i++)
- {
- elem1 = M[y * width + i];//取M矩阵的一行
- elem2 = N[i * width + x];//取N矩阵的一列
-
- value += elem1 * elem2;//求和
- }
-
- P[y * width + x] = value;
- }
-
- int main()
- {
- const int ND = 30;
- int a[ND][ND],b[ND][ND],c[ND][ND];
- int *M,*N,*P;
-
- int width = ND;
- int NUM = 900;
- dim3 blockSize(ND,ND);
-
- cudaEvent_t start,stop;
- float elapsedTime = 0;
- cudaEventCreate(&start);
- cudaEventCreate(&stop);
-
- //设备端内存分配
- cudaMalloc((void**)&M,ND * ND * sizeof(int));
- cudaMalloc((void**)&N,ND * ND * sizeof(int));
- cudaMalloc((void**)&P,ND * ND * sizeof(int));
-
- //初始化
- for(int i = 0;i < ND;i++)
- {
- for(int j = 0;j < ND;j++)
- {
- a[i][j] = 2;
- b[i][j] = 3;
- }
- }
-
- int Size = ND * ND;
- //数据拷贝,主机到设备
- cudaMemcpy(M,a,Size * sizeof(int),cudaMemcpyHostToDevice);
- cudaMemcpy(N,b,Size * sizeof(int),cudaMemcpyHostToDevice);
-
- cudaEventRecord(start,0);
- MatMul<<<1,blockSize>>>(M,N,P,width);//调用核函数
- cudaThreadSynchronize();
- cudaEventRecord(stop,0);
- cudaEventSynchronize(stop);
- cudaEventElapsedTime(&elapsedTime,start,stop);
-
- cudaMemcpy(c,P,Size * sizeof(int),cudaMemcpyDeviceToHost);
-
- printf("c0 = %d \n",c[0][0]);
-
- //释放设备内存
- cudaFree(M);
- cudaFree(N);
- cudaFree(P);
-
- return 0;
- }
运行结果:
矩阵相乘实现方式二:矩阵乘法分块实现,具体如下图所示
具体代码实现:
- #include <stdio.h>
- #include <stdlib.h>
- #include <cuda_runtime.h>
-
-
- #define TILE_WIDTH 10
-
- //核函数的具体实现
- __global__ void matmul(int *M,int *N,int *P,int width)
- {
- __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
- __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
-
- int bx = blockIdx.x;
- int by = blockIdx.y;
- int tx = threadIdx.x;
- int ty = threadIdx.y;
-
- int Col = bx * TILE_WIDTH + tx;
- int Row = by * TILE_WIDTH + ty;
-
- int Pervalue = 0;
-
- for(int i = 0;i < width / TILE_WIDTH;i++) //有多少个TILE_WIDTH,每个循环计算一个块的大小
- {
- Mds[ty][tx] = M[Row * width + (i * TILE_WIDTH + tx)];
- Nds[ty][tx] = N[Col + (i * TILE_WIDTH + ty) * width];
- __syncthreads();
-
-
- for(int k = 0;k < TILE_WIDTH;k++) //TILE_WIDTH相乘
- Pervalue += Mds[ty][k] * Nds[k][tx];
- __syncthreads();
- }
-
- P[Row * width + Col] = Pervalue;
- }
-
-
- int main()
- {
- const int Nd = 30;
- int Size = Nd * Nd;
- int *M,*N,*P;
- int width = Nd / 3;
-
- int a[Nd][Nd];
- int b[Nd][Nd];
- int c[Nd][Nd];
-
- //线程块以及线程的划分
- dim3 gridSize(Nd / width,Nd / width);
- dim3 blockSize(width,width);
-
- cudaEvent_t start,stop;
- float elapsedTime;
- cudaEventCreate(&start);
- cudaEventCreate(&stop);
-
- //设备内存分配
- cudaMalloc((void**)&M,Size * sizeof(int));
- cudaMalloc((void**)&N,Size * sizeof(int));
- cudaMalloc((void**)&P,Size * sizeof(int));
-
- //初始化
- for(int i = 0;i < Nd;i++)
- {
- for(int j = 0;j < Nd;j++)
- {
- a[i][j] = 2;
- b[i][j] = 3;
- }
- }
-
- //数据拷贝,主机到设备
- cudaMemcpy(M,a,Size * sizeof(int),cudaMemcpyHostToDevice);
- cudaMemcpy(N,b,Size * sizeof(int),cudaMemcpyHostToDevice);
-
- cudaEventRecord(start,0);
- matmul<<<gridSize,blockSize>>>(M,N,P,Nd); //调用核函数
- cudaThreadSynchronize();
- cudaEventRecord(stop,0);
- cudaEventSynchronize(stop);
- cudaEventElapsedTime(&elapsedTime,start,stop);
-
-
- cudaMemcpy(c,P,Size * sizeof(int),cudaMemcpyDeviceToHost);
- printf("c0 = %d\n",c[0][0]);
-
-
- cudaFree(M);
- cudaFree(N);
- cudaFree(P);
-
- return 0;
- }
运行结果:
本文也参考了网上的一些资料,主要是做了一定的修改以及程序的完备,图片就直接网上copy的,水平有限,有不当之处,请指教,谢谢!