hadoop MR maven级代码模板

本文介绍如何使用Maven搭建Hadoop开发环境,并通过示例代码演示HDFS操作及MapReduce作业的基本流程。

关于Maven的使用就不再啰嗦了,网上很多,并且这么多年变化也不大,这里仅介绍怎么搭建Hadoop的开发环境。

1. 首先创建工程

mvn archetype:generate -DgroupId=my.hadoopstudy -DartifactId=hadoopstudy -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

2. 然后在pom.xml文件里添加hadoop的依赖包hadoop-common, hadoop-client, hadoop-hdfs,添加后的pom.xml文件如下

<project xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://maven.apache.org/POM/4.0.0"
     xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>my.hadoopstudy</groupId>
  <artifactId>hadoopstudy</artifactId>
  <packaging>jar</packaging>
  <version>1.0-SNAPSHOT</version>
  <name>hadoopstudy</name>
  <url>http://maven.apache.org</url>

  <dependencies>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-common</artifactId>
      <version>2.5.1</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-hdfs</artifactId>
      <version>2.5.1</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-client</artifactId>
      <version>2.5.1</version>
    </dependency>

    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
  </dependencies>
</project>

3. 测试3.1 首先我们可以测试一下hdfs的开发,这里假定使用上一篇Hadoop文章中的hadoop集群,类代码如下

package my.hadoopstudy.dfs;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;

import java.io.InputStream;
import java.net.URI;

public class Test {
  public static void main(String[] args) throws Exception {
    String uri = "hdfs://9.111.254.189:9000/";
    Configuration config = new Configuration();
    FileSystem fs = FileSystem.get(URI.create(uri), config);

    // 列出hdfs上/user/fkong/目录下的所有文件和目录
    FileStatus[] statuses = fs.listStatus(new Path("/user/fkong"));
    for (FileStatus status : statuses) {
      System.out.println(status);
    }

    // 在hdfs的/user/fkong目录下创建一个文件,并写入一行文本
    FSDataOutputStream os = fs.create(new Path("/user/fkong/test.log"));
    os.write("Hello World!".getBytes());
    os.flush();
    os.close();

    // 显示在hdfs的/user/fkong下指定文件的内容
    InputStream is = fs.open(new Path("/user/fkong/test.log"));
    IOUtils.copyBytes(is, System.out, 1024, true);
  }
}

3.2 测试MapReduce作业测试代码比较简单,如下:

package my.hadoopstudy.mapreduce;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import java.io.IOException;

public class EventCount {

  public static class MyMapper extends Mapper<Object, Text, Text, IntWritable>{
    private final static IntWritable one = new IntWritable(1);
    private Text event = new Text();

    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
      int idx = value.toString().indexOf(" ");
      if (idx > 0) {
        String e = value.toString().substring(0, idx);
        event.set(e);
        context.write(event, one);
      }
    }
  }

  public static class MyReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
    if (otherArgs.length < 2) {
      System.err.println("Usage: EventCount <in> <out>");
      System.exit(2);
    }
    Job job = Job.getInstance(conf, "event count");
    job.setJarByClass(EventCount.class);
    job.setMapperClass(MyMapper.class);
    job.setCombinerClass(MyReducer.class);
    job.setReducerClass(MyReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

运行“mvn package”命令产生jar包hadoopstudy-1.0-SNAPSHOT.jar,并将jar文件复制到hadoop安装目录下

这里假定我们需要分析几个日志文件中的Event信息来统计各种Event个数,所以创建一下目录和文件

/tmp/input/event.log.1
/tmp/input/event.log.2
/tmp/input/event.log.3

因为这里只是要做一个列子,所以每个文件内容可以都一样,假如内容如下

JOB_NEW ...
JOB_NEW ...
JOB_FINISH ...
JOB_NEW ...
JOB_FINISH ...

然后把这些文件复制到HDFS上

$ bin/hdfs dfs -put /tmp/input /user/fkong/input

运行mapreduce作业

$ bin/hadoop jar hadoopstudy-1.0-SNAPSHOT.jar my.hadoopstudy.mapreduce.EventCount /user/fkong/input /user/fkong/output

查看执行结果

$ bin/hdfs dfs -cat /user/fkong/output/part-r-00000
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值