Matlab deep learning toolbox CNN代码的C++复写

本文分享了一年前作者用C++实现的卷积神经网络(CNN)代码,该代码完全模仿了Matlab深度学习工具箱的功能,且不依赖于其他第三方库。仅需安装Visual Studio即可运行。所有数学运算如卷积等都是自行编写的,适合初学者学习CNN的基本原理。

Matlab deep learning toolbox被当作是deep learning入门的绝佳代码,但是还是不少人希望有同样的c++代码。

由于很多c++代码都依赖一堆环境,很多朋友会觉得麻烦。

本人一年前曾经写过c++ CNN的代码,完全模仿matlab toolbox,没有依赖其它库,只需要安装visual studio就能跑起来。

包括卷积在内所有数学运算都是自己写的,非常适合想要熟悉CNN原理的朋友使用。

地址:https://github.com/PierreHao/CNN-in-C-plus-plus

由于代码一年前写的,没有维护修改,如有问题,欢迎指正^_^

Deep Learning Tutorials ======================= Deep Learning is a new area of Machine Learning research, which has been introduced with the objective of moving Machine Learning closer to one of its original goals: Artificial Intelligence. Deep Learning is about learning multiple levels of representation and abstraction that help to make sense of data such as images, sound, and text. The tutorials presented here will introduce you to some of the most important deep learning algorithms and will also show you how to run them using Theano. Theano is a python library that makes writing deep learning models easy, and gives the option of training them on a GPU. The easiest way to follow the tutorials is to `browse them online <http://deeplearning.net/tutorial/>`_. `Main development <http://github.com/lisa-lab/DeepLearningTutorials>`_ of this project. .. image:: https://secure.travis-ci.org/lisa-lab/DeepLearningTutorials.png :target: http://travis-ci.org/lisa-lab/DeepLearningTutorials Project Layout -------------- Subdirectories: - code - Python files corresponding to each tutorial - data - data and scripts to download data that is used by the tutorials - doc - restructured text used by Sphinx to build the tutorial website - html - built automatically by doc/Makefile, contains tutorial website - issues_closed - issue tracking - issues_open - issue tracking - misc - administrative scripts Build instructions ------------------ To build the html version of the tutorials, install sphinx and run doc/Makefile
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值