UVA674 Coin Change

本文介绍了一种使用动态规划解决硬币找零问题的方法。针对五种不同面额的硬币,通过编程实现求解任意金额下的找零组合数量。采用完全背包思想,通过状态转移方程递推得出所有可能的找零方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to makechanges with these coins for a given amount of money.
For example, if we have 11 cents, then we can make changes with one 10-cent coin and one 1-centcoin, two 5-cent coins and one 1-cent coin, one 5-cent coin and six 1-cent coins, or eleven 1-cent coins.So there are four ways of making changes for 11 cents with the above coins. Note that we count thatthere is one way of making change for zero cent.
Write a program to find the total number of different ways of making changes for any amount ofmoney in cents. Your program should be able to handle up to 7489 cents.
Input
The input file contains any number of lines, each one consisting of a number for the amount of moneyin cents.
Output
For each input line, output a line containing the number of different ways of making changes with theabove 5 types of coins.
Sample Input
11
26
Sample Output
4
13

题意:给定五种硬币,1,5,10,25,50;输入钱币面值,由这五种硬币组合而成,问有多少种组合;五种硬币无限次取,完全背包,
状态方程:dp[i][j] +=dp[i-1][j-coin[i]] 前j元能由i枚硬币组成的方案数

//货币组成DP

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<string.h>

using namespace std;

int coin[5]={1,5,10,25,50};
int dp[8000];

int main()
{
    int n;

    while(cin >> n){
        memset(dp,0,sizeof(dp));
        dp[0]=1;
        for(int i=0;i<5;i++){
            for(int j=coin[i];j<=8000;j++){
                dp[j] +=dp[j-coin[i]];
            }
        }
        cout << dp[n]<< endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值