hdu1466计算直线的交点数

本文探讨了平面上n条直线在无三线共点条件下的不同交点数计算问题,采用动态规划方法进行求解,通过将直线分为两部分并计算各自交点数及两部分间交点数,实现对所有可能交点数的枚举。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数。
比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行)。

首先将n条直线分成两部分,第一部分j条直线互相全部两两平行,第二部分n-j条直线与第一部分不平行。

总的交点数=第二部分的交点数+两个部分之间的交点数,其中第二部分的交点数是原问题的子问题,两部分之间的交点数=两部分直线数量的乘积

于是 m[n] = m[i]+i*(n-i)  

动态规划:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int dp[25][500];
int n;
int main()
{
    //freopen("datain.txt","r",stdin);
    for(int i=0; i<21; i++)
        dp[i][0]=1;//边界:i条直线,没有交点
    for(int i=1; i<21; i++)//i条直线
        for(int j=0; j<i; j++)//其中j条直线相互平行
            for(int k=0; k<191; k++)
                if(dp[i-j][k])//状态转移:
                //如果i-j条直线之间交点数k
                    dp[i][(i-j)*j+k]=1;
                //那么i条直线总的交点方案数为(i-j)*j+k
    while(~scanf("%d",&n))
    {
        printf("0");//预处理完毕之后直接输出
        for(int i=1; i<191; i++)
            if(dp[n][i])
                printf(" %d",i);
        printf("\n");
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值