近期算法课上,刚刚学习了 关于最近点对的相关知识,目前只是参看了大牛的思想 ,写了个最基本的裸最近点对。下面是两种方式
蛮力法:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
using namespace std;
struct p{
int x;
int y;
};
double ClosestPoint1(int n,p a[],int &index1,int &index2){
double d;
double Dist=10000;
int i,j;
for(i=0;i<n-1;i++)
for(j=i+1;j<=n-1;j++){
d=(a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y);
if(Dist>=d){
Dist=d;
index1=i;
index2=j;
}
}
//printf("%d %d\n",i,j);
return Dist;
}
int main()
{
int n,t,j;
p a[100];
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d%d",&a[i].x,&a[i].y);
}
int d=ClosestPoint1(n,a,t,j);
printf("%d\n",d);
return 0;
}
}
分治法:
const int N = 100005;
const double MAX = 10e100, eps = 0.00001;
struct Point { double x, y; int index; };
Point a[N], b[N], c[N];
double closest(Point *, Point *, Point *, int, int);
double dis(Point, Point);
int cmp_x(const void *, const void*);
int cmp_y(const void *, const void*);
int merge(Point *, Point *, int, int, int);
inline double min(double, double);
int main(){
int n, i;
double d;
scanf("%d", &n);
while (n) {
for (i = 0; i < n; i++)
scanf("%lf%lf", &(a[i].x), &(a[i].y));
qsort(a, n, sizeof(a[0]), cmp_x);
for (i = 0; i < n; i++)
a[i].index = i;
memcpy(b, a, n *sizeof(a[0]));
qsort(b, n, sizeof(b[0]), cmp_y);
d = closest(a, b, c, 0, n - 1);
printf("%.2lf\n", d);
}
return 0;
}
double closest(Point a[],Point b[],Point c[],int p,int q){
if (q - p == 1) return dis(a[p], a[q]);
if (q - p == 2) {
double x1 = dis(a[p], a[q]);
double x2 = dis(a[p + 1], a[q]);
double x3 = dis(a[p], a[p + 1]);
if (x1 < x2 && x1 < x3) return x1;
else if (x2 < x3) return x2;
else return x3;
}
int i, j, k, m = (p + q) / 2;
double d1, d2;
for (i = p, j = p, k = m + 1; i <= q; i++)
if (b[i].index <= m) c[j++] = b[i];
//数组c左半部保存划分后左部的点, 且对y是有序的.
else c[k++] = b[i];
d1 = closest(a, c, b, p, m);
d2 = closest(a, c, b, m + 1, q);
double dm = min(d1, d2);
//数组c左右部分分别是对y坐标有序的, 将其合并到b.
merge(b, c, p, m, q);
for (i = p, k = p; i <= q; i++)
if (fabs(b[i].x - b[m].x) < dm) c[k++] = b[i];
//找出离划分基准左右不超过dm的部分, 且仍然对y坐标有序.
for (i = p; i < k; i++)
for (j = i + 1; j < k && c[j].y - c[i].y < dm; j++){ double temp = dis(c[i], c[j]);
if (temp < dm) dm = temp;
}
return dm;
}
double dis(Point p, Point q){
double x1 = p.x - q.x, y1 = p.y - q.y;
return sqrt(x1 *x1 + y1 * y1);
}
int merge(Point p[], Point q[], int s, int m, int t){
int i, j, k;
for (i=s, j=m+1, k = s; i <= m && j <= t;) {
if (q[i].y > q[j].y) p[k++] = q[j], j++;
else p[k++] = q[i], i++;
}
while (i <= m) p[k++] = q[i++];
while (j <= t) p[k++] = q[j++];
memcpy(q + s, p + s, (t - s + 1) *sizeof(p[0]));
return 0;
}
int cmp_x(const void *p, const void *q){
double temp = ((Point*)p)->x - ((Point*)q)->x;
if (temp > 0) return 1;
else if (fabs(temp) < eps) return 0;
else return - 1;
}
int cmp_y(const void *p, const void *q){
double temp = ((Point*)p)->y - ((Point*)q)->y;
if (temp > 0) return 1;
else if (fabs(temp) < eps) return 0;
else return - 1;
}
inline double min(double p, double q)
{
return (p > q) ? (q): (p);
}