198 House Robber

本文介绍了一个经典的线性规划问题——LeetCode 198抢劫者问题。该问题是关于如何在不触动相邻房屋警报系统的前提下,最大化抢劫金额。通过动态规划的方法,给出了详细的解决方案及C++实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Leetcode198:

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

这是一道典型的线性规划问题,假设有n个房子,编号0~n-1,令抢劫第i个房子时已经抢到的钱最多,则:

抢劫第i个房子   f(i) = num[i] + g(i+1)

不抢劫第i个房子   g(i) = max( f(i) , g(i) )

class Solution {
public:
	int rob(vector<int> &num) {
		int f = 0, g = 0, pref = 0, preg = 0, s = 0;
		for (int i = num.size() - 1; i >= 0;i--)
		{
			f = preg + num[i];
			g = max(pref, preg);
			pref = f;
			preg = g;
		}
		return max(f, g);
	}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值