Given a string S,
find the longest palindromic substring in S.
You may assume that the maximum length of S is
1000, and there exists one unique longest palindromic substring.
Solution 1:
class Solution {
public:
string longestPalindrome(string s) {
int n = s.length();
int longestBegin = 0;
int maxLen = 1;
bool table[1000][1000] = {false};
for(int i = 0; i < n; i++)
{
table[i][i] = true;
}
for(int i = 0; i < n-1; i++)
{
if(s[i] == s[i+1])
{
table[i][i+1] = true;
longestBegin = i;
maxLen = 2;
}
}
for(int len = 3; len <= n; len++)
{
for(int i = 0; i < n-len+1; i++)
{
int j = i+len-1;
if(s[i] == s[j] && table[i+1][j-1])
{
table[i][j] = true;
longestBegin = i;
maxLen = len;
}
}
}
return s.substr(longestBegin, maxLen);
}
};Solution 2:
class Solution {
public:
string expandAroundCenter(string s, int c1, int c2)
{
int l = c1, r = c2;
int n = s.length();
while(l >= 0 && r <= n-1 && s[l] == s[r])
{
l--;
r++;
}
return s.substr(l+1, r-l-1);
}
string longestPalindrome(string s) {
int n = s.length();
if(n==0) return "";
string longest = s.substr(0,1);
for(int i = 0; i < n-1; i++)
{
string p1 = expandAroundCenter(s,i,i);
if(p1.length() > longest.length())
longest = p1;
string p2 = expandAroundCenter(s,i,i+1);
if(p2.length() > longest.length())
longest = p2;
}
return longest;
}
};

本文介绍了两种高效算法来寻找给定字符串中的最长回文子串。第一种算法使用动态规划的方法,通过构建一个布尔型表格来记录字符串中各部分是否为回文。第二种算法采用中心扩展法,分别考虑奇数长度和偶数长度的回文情况。
285

被折叠的 条评论
为什么被折叠?



