Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is: (-1, 0, 0, 1) (-2, -1, 1, 2) (-2, 0, 0, 2)
class Solution {
public:
vector<vector<int> > fourSum(vector<int> &num, int target) {
vector<vector<int>> ret;
if(num.size() < 3) return ret;
sort(num.begin(), num.end());
for(int a = 0; a < num.size(); a++)
{
if(a > 0 && num[a] == num[a-1])
continue;
for(int b = a + 1; b < num.size(); b++)
{
if(b > a + 1 && num[b] == num[b-1])
continue;
int c = b + 1, d = num.size() - 1;
while(c < d)
{
int sum = num[a] + num[b] + num[c] + num[d];
if(sum > target || (d < num.size()-1 && num[d] == num[d+1]))
d--;
else if(sum < target || (c > b+1 && num[c] == num[c-1]))
c++;
else
{
vector<int> quadruplet;
quadruplet.push_back(num[a]);
quadruplet.push_back(num[b]);
quadruplet.push_back(num[c]);
quadruplet.push_back(num[d]);
ret.push_back(quadruplet);
c++;
d--;
}
}
}
}
return ret;
}
};