bzoj 1010 [HNOI2008]玩具装箱toy(DP的斜率优化)

本文介绍HNOI2008玩具装箱问题,通过斜率优化DP解决玩具最佳装箱方案,以实现最低制作成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 7874  Solved: 3047
[Submit][Status][Discuss]

Description

P 教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维 容器中。P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。 同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度 将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作 出任意长度的容器,甚至超过L。但他希望费用最小.

Input

第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

HINT

Source

 

【思路】

  斜率优化DP。

  第一次写斜率优化好紧张=-=

  转移方程为:

  f[x]=min{f[i]+(x-i-1+sum(x)-sum(i)-L)^2}

  即f[x]=min{f[i]+((x+sum(x)-1-L)-(i+sum(i)))^2}

  设a[x]=x+sum(x)-1-L , b[i]=i+sum(i) 于是有

  f[x]=min{f[i]+b[i]^2-2*a[x]*b[i]}+a[x]^2,这里设x(i)=b[i],y(i)=f(i)+b[i]^2,则有

  f[x]=min{y(i)-2*a[x]*x(i)},即直线min p=y-2ax。

  因为a[x]与x(i)都是单调递增的,所以可以用单调队列维护下凸包,在O(n)时间得解。

 

【代码】

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<iostream>
 4 using namespace std;
 5 
 6 const int maxn = 50000+10;
 7 
 8 typedef long long LL;
 9 struct point { LL x,y; };
10 point now,D[maxn];
11 LL C[maxn*10];
12 LL cross(point a,point b,point c) {        //向量ab与向量ac的叉积 叉积<0时ca位于ba的右侧 
13     return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
14 }
15 int n,w;
16 
17 int main() {
18     scanf("%d%d",&n,&w);
19     for(int i=1;i<=n;i++) {
20         scanf("%d",&C[i]); C[i]+=C[i-1];
21     }
22     int L=0,R=0;
23     for(int i=1;i<=n;i++) {
24         while(L<R && D[L].y-2*(i+C[i]-w-1)*D[L].x >= D[L+1].y-2*(i+C[i]-w-1)*(D[L+1].x)) L++;    //删除对于当前点言不是最优的 
25         now.x=i+C[i];                                                                            //计算新点 
26         now.y=D[L].y-2*(i+C[i]-w-1)*D[L].x+(i+C[i]-w-1)*(i+C[i]-w-1)+(i+C[i])*(i+C[i]);
27         while(L<R && cross(D[R-1],D[R],now)<=0) R--;                                            //维护凸壳 插入新点 
28         D[++R]=now;
29     }
30     printf("%lld\n",D[R].y-(n+C[n])*(n+C[n]));        //计算f[n]=y[R]-b[n]^2
31     return 0;
32 }

 

内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值