hdu 5185 Equation(dp题)

本文探讨了一种特定的组合数学问题,即对于给定的整数n和m,寻找满足特定条件的组合数量,并通过模运算输出结果。该问题来源于BestCoderRound#32竞赛。
Equation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 647 Accepted Submission(s): 227


Problem Description
Gorwin is very interested in equations. Nowadays she gets an equation like this
x1+x2+x3+⋯+xn=n, and here
0≤xi≤nfor1≤i≤nxi≤xi+1≤xi+1for1≤i≤n−1

For a certain n, Gorwin wants to know how many combinations of xi satisfies above condition.
For the answer may be very large, you are expected output the result after it modular m.


Input
Multi test cases. The first line of the file is an integer T indicates the number of test cases.
In the next T lines, every line contain two integer n,m.

[Technical Specification]
1≤T<20
1≤n≤50000
1≤m≤1000000000


Output
For each case output should occupies one line, the output format is Case #id: ans, here id is the data number starting from 1, ans is the result you are expected to output.
See the samples for more details.


Sample Input

2
3 100
5 100



Sample Output

Case #1: 2
Case #2: 3



Source
BestCoder Round #32


Recommend
hujie
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define N 50010
int dp[500][N];
int main()
{
    int T,t=1;
    long long n,m;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld %lld",&n,&m);
        int k=1;
        while(k*(k+1)<=2*n) k++;
        k--;
        for(int i=0;i<=n;i++)
        dp[0][i]=0;
        for(int i=1;i<=k;i++)
            dp[i][0]=0;
        dp[0][0]=1;
        for(int i=1;i<=k;i++)
        {
            for(int j=i;j<=n;j++)
            {
                dp[i][j]=(dp[i][j-i]+dp[i-1][j-i])%m;
            }
        }
        long long ans=0;
        for(int i=1;i<=k;i++)
            ans=(ans+dp[i][n])%m;
        printf("Case #%d: %lld\n",t++,ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值