#coding:utf-8
import threading
import random
import Queue
from time import sleep
import sys
#
#需求分析:有大批量数据需要执行,而且是重复一个函数操作(例如爆破密码),如果全部开始线程数N多,这里控制住线程数m个并行执行,其他等待
#
#继承一个Thread类,在run方法中进行需要重复的单个函数操作
class Test(threading.Thread):
def __init__(self,queue,lock,num):
#传递一个队列queue和线程锁,并行数
threading.Thread.__init__(self)
self.queue=queue
self.lock=lock
self.num=num
def run(self):
#while True:#不使用threading.Semaphore,直接开始所有线程,程序执行完毕线程都还不死,最后的print threading.enumerate()可以看出
with self.num:#同时并行指定的线程数量,执行完毕一个则死掉一个线程
#以下为需要重复的单次函数操作
n=self.queue.get()#等待队列进入
lock.acquire()#锁住线程,防止同时输出造成混乱
print '开始一个线程:',self.name,'模拟的执行时间:',n
print '队列剩余:',queue.qsize()
print threading.enumerate()
lock.release()
sleep(n)#执行单次操作,这里sleep模拟执行过程
self.queue.task_done()#发出此队列完成信号
threads=[]
queue=Queue.Queue()
lock=threading.Lock()
num=threading.Semaphore(3)#设置同时执行的线程数为3,其他等待执行
#启动所有线程
for i in range(10):#总共需要执行的次数
t=Test(queue,lock,num)
t.start()
threads.append(t)
#吧队列传入线程,是run结束等待开始执行,放下面单独一个for也行,这里少个循环吧
n=random.randint(1,10)
queue.put(n)#模拟执行函数的逐个不同输入
#吧队列传入线程,是run结束等待开始执行
#for t in threads:
# n=random.randint(1,10)
# queue.put(n)
#等待线程执行完毕
for t in threads:
t.join()
queue.join()#等待队列执行完毕才继续执行,否则下面语句会在线程未接受就开始执行
print '所有执行完毕'
print threading.active_count()
print threading.enumerate()
本文通过实例讲解了如何使用Python的threading模块创建线程池,并结合任务队列实现多线程并发执行任务,有效控制线程数量,避免资源过度消耗。

1843

被折叠的 条评论
为什么被折叠?



