【每周CV论文推荐】 初学深度学习人脸识别和验证必读文章

本文推荐了深度学习人脸识别领域的六篇经典论文,包括DeepFace、DeepID系列、FaceNet、CenterFace、RangeLoss及AngularLoss,涵盖了从早期的深度学习模型到最新进展,适合初学者入门及研究人员深入学习。
部署运行你感兴趣的模型镜像

欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。

人脸识别和验证是当前人脸图像在身份认证领域中最广泛的应用,今天给大家介绍入门深度学习人脸识别必读的文章。

作者&编辑 | 言有三

1 Deepface

Deepface是最早期的深度学习人脸识别框架,它首先对输入人脸经过3D对齐,然后使用数据集训练一个人脸分类器得到人脸特征提取网络,最后使用Siamese网络训练人脸验证网络。

文章引用量:3500+

推荐指数:✦✦✦✦✦

640?wx_fmt=png

[1] Taigman Y, Yang M, Ranzato M A, et al. Deepface: Closing the gap to human-level performance in face verification[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 1701-1708.

2 DeepID系列

DeepID系列总共有4篇文章,其中三篇值得读。DeepID1训练了一个多层CNN对约10000个人提取人脸识别特征,使用分类任务的方法。DeepID2添加了验证损失,DeepID  2+加大了网络宽度,增加了多尺度的监督。

文章引用量:1000+

推荐指数:✦✦✦✦✦

640?wx_fmt=png

[2] Sun Y, Wang X, Tang X. Deep learning face representation from predicting 10,000 classes[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 1891-1898.

[3] Sun Y, Chen Y, Wang X, et al. Deep learning face representation by joint identification-verification[C]//Advances in neural information processing systems. 2014: 1988-1996.

[4] Sun Y, Wang X, Tang X. Deeply learned face representations are sparse, selective, and robust[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 2892-2900.

3 FaceNet

FaceNet提出了一种end-to-end的网络结构,使用了triplet loss,这样提取的特征可以直接用欧氏距离计算相似度,避免了前述方法的后处理步骤,VGGFace中进行了很好的工程实践。

文章引用量:2000+

推荐指数:✦✦✦✦✦

640?wx_fmt=png

[5] Schroff F, Kalenichenko D, Philbin J. Facenet: A unified embedding for face recognition and clustering[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 815-823.

[6] Parkhi, Omkar M., Andrea Vedaldi, and Andrew Zisserman. "Deep face recognition." bmvc. Vol. 1. No. 3. 2015.

4 Center face

Center face提出了Center Loss,使类内中心均匀分布并最小化类内差异,是基于分类和度量学习方法的结合。

文章引用量:1000+

推荐指数:✦✦✦✦✦

640?wx_fmt=png

[7] Wen Y, Zhang K, Li Z, et al. A discriminative feature learning approach for deep face recognition[C]//European conference on computer vision. Springer, Cham, 2016: 499-515.

5 Range loss

Range loss也是以上各类loss的结合,关注长尾分布的数据,类内要求每个类最小化两个最大类内距离,类间要求类中心距离最小的两个类别距离大于margin 。

文章引用量:40+

推荐指数:✦✦✦✦✧

640?wx_fmt=png

[8] Zhang X, Fang Z, Wen Y, et al. Range loss for deep face recognition with long-tailed training data[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 5409-5418.

6 angular loss与coco loss

angular loss在triplet loss的基础上添加了角度约束,增强了其尺度不变性。coco loss则把cosine距离和center loss结合起来。

640?wx_fmt=png

文章引用量:40+

推荐指数:✦✦✦✦✧

[9] Wang J, Zhou F, Wen S, et al. Deep metric learning with angular loss[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 2593-2601.

[10] Liu Y, Li H, Wang X. Rethinking feature discrimination and polymerization for large-scale recognition[J]. arXiv preprint arXiv:1710.00870, 2017.

7 softmax loss及其变种

softmax loss在很早的时候就被应用于人脸识别任务,但是因为它没有考虑类内距离,所以有很多的研究者都对其进行了改进,我们在一年前给大家做过综述,可以参考往期文章。

640?wx_fmt=png

8 如何获取文章与交流

找到有三AI开源项目即可获取。

https://github.com/longpeng2008/yousan.ai

640?wx_fmt=png

文章细节众多,阅读交流在有三AI知识星球中进行,感兴趣可以加入。

640?wx_fmt=jpeg

总结

人脸识别是人脸算法中最广泛的应用,仍然有研究空间,往后我们将推荐跨年龄,抗遮挡与装饰,3D人脸识别相关的文章。

有三AI秋季划

640?wx_fmt=png

有三AI秋季划已经正式启动报名,模型优化,人脸算法,图像质量共24个项目,助力提升深度学习计算机视觉算法和工程项目能力。

转载文章请后台联系

侵权必究

640?wx_fmt=png
640?wx_fmt=png
640?wx_fmt=png

往期精选

您可能感兴趣的与本文相关的镜像

ACE-Step

ACE-Step

音乐合成
ACE-Step

ACE-Step是由中国团队阶跃星辰(StepFun)与ACE Studio联手打造的开源音乐生成模型。 它拥有3.5B参数量,支持快速高质量生成、强可控性和易于拓展的特点。 最厉害的是,它可以生成多种语言的歌曲,包括但不限于中文、英文、日文等19种语言

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

言有三

三人行必有AI

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值