python 3.3.2报错:No module named 'urllib2' 解决方法

本文介绍了解决Python3中urllib2模块不存在的问题,提供了正确的导入方式,并更新了打印语句的写法。
部署运行你感兴趣的模型镜像

python代码:

import urllib2  
response = urllib2.urlopen('http://www.baidu.com/')  
html = response.read()  
print html  

报错如下:

Traceback (most recent call last):
  File "<pyshell#0>", line 1, in <module>
    import urllib2
ImportError: No module named 'urllib2' 

解决方法:

在python3.3里面,用urllib.request代替urllib2,另外python3之后,不能再用,print html
注意:print 的东西要用()括起来。
这样的方式,因为print这个时候已经是一个方法了。必须使用下面的方法
可以将代码换成:

import urllib.request
resp=urllib.request.urlopen('http://www.baidu.com')
html=resp.read()
print(html)

您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

Windows PowerShell Copyright (C) Microsoft Corporation. All rights reserved. Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows Loading personal and system profiles took 7321ms. (t39) PS C:\GAMG5> python -c "import torchvision; print(torchvision.__version__)" Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named &#39;torchvision&#39; (t39) PS C:\GAMG5> # 示例:安装特定版本 (t39) PS C:\GAMG5> pip install torchvision==0.15.2 Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting torchvision==0.15.2 Downloading https://pypi.tuna.tsinghua.edu.cn/packages/d8/48/e2a056436033da54856d793e12dc0fcf8cdd179fd4cd0d1ce7c7ce659797/torchvision-0.15.2-cp39-cp39-win_amd64.whl (1.2 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 1.8 MB/s 0:00:01 Requirement already satisfied: numpy in c:\anaconda3\envs\t39\lib\site-packages (from torchvision==0.15.2) (1.26.4) Requirement already satisfied: requests in c:\anaconda3\envs\t39\lib\site-packages (from torchvision==0.15.2) (2.32.5) Collecting torch==2.0.1 (from torchvision==0.15.2) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/48/f4/d0b61525a3d3db78636f1937d1bc24cbb39abc57484a545b72b6ab35c114/torch-2.0.1-cp39-cp39-win_amd64.whl (172.4 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 172.4/172.4 MB 8.7 MB/s 0:00:19 Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in c:\anaconda3\envs\t39\lib\site-packages (from torchvision==0.15.2) (11.1.0) Requirement already satisfied: filelock in c:\anaconda3\envs\t39\lib\site-packages (from torch==2.0.1->torchvision==0.15.2) (3.17.0) Requirement already satisfied: typing-extensions in c:\anaconda3\envs\t39\lib\site-packages (from torch==2.0.1->torchvision==0.15.2) (4.15.0) Requirement already satisfied: sympy in c:\anaconda3\envs\t39\lib\site-packages (from torch==2.0.1->torchvision==0.15.2) (1.14.0) Requirement already satisfied: networkx in c:\anaconda3\envs\t39\lib\site-packages (from torch==2.0.1->torchvision==0.15.2) (3.2.1) Requirement already satisfied: jinja2 in c:\anaconda3\envs\t39\lib\site-packages (from torch==2.0.1->torchvision==0.15.2) (3.1.6) Requirement already satisfied: MarkupSafe>=2.0 in c:\anaconda3\envs\t39\lib\site-packages (from jinja2->torch==2.0.1->torchvision==0.15.2) (3.0.2) Requirement already satisfied: charset_normalizer<4,>=2 in c:\anaconda3\envs\t39\lib\site-packages (from requests->torchvision==0.15.2) (3.3.2) Requirement already satisfied: idna<4,>=2.5 in c:\anaconda3\envs\t39\lib\site-packages (from requests->torchvision==0.15.2) (3.7) Requirement already satisfied: urllib3<3,>=1.21.1 in c:\anaconda3\envs\t39\lib\site-packages (from requests->torchvision==0.15.2) (2.5.0) Requirement already satisfied: certifi>=2017.4.17 in c:\anaconda3\envs\t39\lib\site-packages (from requests->torchvision==0.15.2) (2025.10.5) Requirement already satisfied: mpmath<1.4,>=1.1.0 in c:\anaconda3\envs\t39\lib\site-packages (from sympy->torch==2.0.1->torchvision==0.15.2) (1.3.0) Installing collected packages: torch, torchvision Attempting uninstall: torch Found existing installation: torch 2.5.1 Uninstalling torch-2.5.1: Successfully uninstalled torch-2.5.1 Attempting uninstall: torchvision Found existing installation: torchvision 0.20.1 Uninstalling torchvision-0.20.1: Successfully uninstalled torchvision-0.20.1 Successfully installed torch-2.0.1 torchvision-0.15.2 (t39) PS C:\GAMG5> # 确认当前环境安装的包 (t39) PS C:\GAMG5> pip list | findstr "torch" torch 2.0.1 torchaudio 2.0.2+cpu torchvision 0.15.2 (t39) PS C:\GAMG5> pip uninstall torch torchvision torchaudio -y Found existing installation: torch 2.0.1 Uninstalling torch-2.0.1: Successfully uninstalled torch-2.0.1 Found existing installation: torchvision 0.15.2 Uninstalling torchvision-0.15.2: Successfully uninstalled torchvision-0.15.2 Found existing installation: torchaudio 2.0.2+cpu Uninstalling torchaudio-2.0.2+cpu: Successfully uninstalled torchaudio-2.0.2+cpu (t39) PS C:\GAMG5> python -c "import torch; print(torch.__version__, torch.cuda.is_available())" Traceback (most recent call last): File "<string>", line 1, in <module> AttributeError: module &#39;torch&#39; has no attribute &#39;__version__&#39; (t39) PS C:\GAMG5> python -c "import torchvision; print(torchvision.__version__)" Traceback (most recent call last): File "<string>", line 1, in <module> ModuleNotFoundError: No module named &#39;torchvision&#39; (t39) PS C:\GAMG5>
最新发布
11-05
<think>我们注意到用户已经按照之前的建议执行了卸载操作,但卸载后尝试导入torch时出现了新的错误:`AttributeError: module &#39;torch&#39; has no attribute &#39;__version__&#39;`。这通常是因为卸载不彻底,环境中残留了torch的模块文件,导致Python尝试导入一个不完整的包。 ### 解决方案 1. **彻底清除残留文件**: - 手动删除环境中残留的torch相关文件。在Conda环境中,这些文件通常位于: ``` C:\anaconda3\envs\t39\Lib\site-packages\torch C:\anaconda3\envs\t39\Lib\site-packages\torchvision C:\anaconda3\envs\t39\Lib\site-packages\torchaudio ``` - 同时检查并删除以下文件(如果存在): ``` torch-xxx.dist-info torchvision-xxx.dist-info torchaudio-xxx.dist-info ``` 2. **重新安装兼容版本**: 使用以下命令安装兼容的PyTorch、TorchVision和TorchAudio(以CPU版本为例,如果需要GPU版本则添加CUDA参数): ```powershell pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cpu ``` 3. **验证安装**: ```powershell python -c "import torch; print(torch.__version__)" python -c "import torchvision; print(torchvision.__version__)" ``` 4. **备选方案:重建环境**: 如果问题仍然存在,建议创建一个新的Conda环境: ```powershell conda create -n yolo_env python=3.9 conda activate yolo_env pip install ultralytics ``` ### 注意事项 - 在Windows系统中,由于文件锁定问题,卸载有时会不彻底,手动删除残留文件是必要的。 - 确保在安装前没有其他Python进程在后台运行(如Jupyter内核),以免文件被锁定。 §§相关问题§§ 1. 如何彻底清除Python环境中残留的包文件? 2. 在Windows系统中如何解决因文件被锁定导致的卸载失败? 3. 安装PyTorch时如何选择适合自己硬件的版本(CPU/GPU)? 4. 为什么在卸载后导入torch会报`AttributeError`错误? 5. 使用Conda创建新环境时有哪些最佳实践以避免依赖冲突? </think>### 问题分析与解决方案 #### 当前错误分析 1. **残留文件问题** `AttributeError: module &#39;torch&#39; has no attribute &#39;__version__&#39;` 表明卸载后仍有残留文件干扰 - PyTorch 卸载不彻底,残留文件导致 Python 尝试加载不完整的包 - 常见于 Windows 系统,因文件锁定导致卸载不完全 2. **环境状态异常** - `pip uninstall` 显示成功但实际未清除干净 - 尝试导入时找不到核心属性,说明包结构已损坏 #### 彻底解决方案 1. **强制清除残留文件** 手动删除环境目录中的残留文件: ```powershell # 删除 torch 残留 Remove-Item -Recurse -Force "$env:CONDA_PREFIX\Lib\site-packages\torch" Remove-Item -Force "$env:CONDA_PREFIX\Lib\site-packages\torch-*.dist-info" # 删除 torchvision 残留 Remove-Item -Recurse -Force "$env:CONDA_PREFIX\Lib\site-packages\torchvision" Remove-Item -Force "$env:CONDA_PREFIX\Lib\site-packages\torchvision-*.dist-info" # 删除 torchaudio 残留 Remove-Item -Recurse -Force "$env:CONDA_PREFIX\Lib\site-packages\torchaudio" Remove-Item -Force "$env:CONDA_PREFIX\Lib\site-packages\torchaudio-*.dist-info" ``` 2. **重新安装最新兼容版本** ```powershell pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cu121 ``` 3. **终极清理方案** 若仍失败,重建环境: ```powershell conda deactivate conda env remove -n t39 conda create -n yolov5_env python=3.9 conda activate yolov5_env pip install ultralytics torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 ``` #### 验证步骤 ```powershell # 验证安装完整性 python -c "import torch; print(torch.__version__, torch.cuda.is_available())" python -c "import torchvision; print(torchvision.__version__)" python -c "import torchaudio; print(torchaudio.__version__)" # 测试YOLO导入 python -c "from ultralytics import YOLO; print(&#39;导入成功&#39;)" ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值