Python学习笔记——Python中的基本语法2

本文详细介绍了Python中的三种基本数据结构:列表、元组和字典。列表是灵活的数据集合,支持多种操作如索引访问、切片、连接及重复等;元组与列表相似,但不可变,适用于不需要修改的序列;字典则是一种哈希表,通过键值对存储数据,便于快速查找。

Python列表:

列表是最通用的Python复合数据类型。列表中包含以逗号分隔,并在方括号[])包含的项目。在一定程度上,列表相似C语言中的数组,它们之间的一个区别是,所有属于一个列表中的项目可以是不同的数据类型的。

存储在一个列表中的值可以使用切片操作符来访问([]和[:])用索引从0开始,在列表的开始位置和结束为-1。加号(+)符号列表连接运算符,星号(*)重复操作。例如:

#!/usr/bin/python

list = [ 'abcd', 786 , 2.23, 'john', 70.2 ]
tinylist = [123, 'john']

print list          # Prints complete list
print list[0]       # Prints first element of the list
print list[1:3]     # Prints elements starting from 2nd till 3rd 
print list[2:]      # Prints elements starting from 3rd element
print tinylist * 2  # Prints list two times
print list + tinylist # Prints concatenated lists

这将产生以下结果:

['abcd', 786, 2.23, 'john', 70.200000000000003]
abcd
[786, 2.23]
[2.23, 'john', 70.200000000000003]
[123, 'john', 123, 'john']
['abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john']

删除列表中的值

list = [ 'abcd', 786 , 2.23, 'john', 70.2 ]
del list[0] #删除列表的第一个值

获取列表长度

list = [ 'abcd', 786 , 2.23, 'john', 70.2 ]
lenlist=len(list)

列表遍历

list = [ 'abcd', 786 , 2.23, 'john', 70.2 ]
for element in list:
    print element

Python元组:

元组是类似于列表中的序列数据类型。一个元组由数个逗号分隔的值。不同于列表,不过,元组圆括号括起来。

列表和元组之间的主要区别是:列表括在括号([])和它们的元素和大小是可以改变的,而元组在圆括号(),不能被更新。元组可以被认为是只读列表。例如:

#!/usr/bin/python

tuple = ( 'abcd', 786 , 2.23, 'john', 70.2  )
tinytuple = (123, 'john')

print tuple           # Prints complete list
print tuple[0]        # Prints first element of the list
print tuple[1:3]      # Prints elements starting from 2nd till 3rd 
print tuple[2:]       # Prints elements starting from 3rd element
print tinytuple * 2   # Prints list two times
print tuple + tinytuple # Prints concatenated lists

这将产生以下结果:

('abcd', 786, 2.23, 'john', 70.200000000000003)
abcd
(786, 2.23)
(2.23, 'john', 70.200000000000003)
(123, 'john', 123, 'john')
('abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john')

以下是元组无效的,因为我们尝试更新一个元组,这是不允许的。类似的操作在列表中是可以的:

#!/usr/bin/python

tuple = ( 'abcd', 786 , 2.23, 'john', 70.2  )
list = [ 'abcd', 786 , 2.23, 'john', 70.2  ]
tuple[2] = 1000    # Invalid syntax with tuple
list[2] = 1000     # Valid syntax with list

注意:元组中只包含一个元素时,需要在元素后面添加逗号来消除歧义:tup1=(55,)

Python字典:

Python字典是一种哈希表型。他们像关联数组或哈希在Perl中一样,由键 - 值对组成。字典键几乎可以是任何Python类型,但通常是数字或字符串。值可以是任意Python的对象。

字典是由花括号括号({}),可分配值,并用方括号([])访问。例如:

#!/usr/bin/python

dict = {}
dict['one'] = "This is one"
dict[2]     = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}


print dict['one']       # Prints value for 'one' key
print dict[2]           # Prints value for 2 key
print tinydict          # Prints complete dictionary
print tinydict.keys()   # Prints all the keys
print tinydict.values() # Prints all the values

这将产生以下结果:

This is one
This is two
{'dept': 'sales', 'code': 6734, 'name': 'john'}
['dept', 'code', 'name']
['sales', 6734, 'john']

字典有元素顺序的概念。它的元素是无序的。


总结:

1、列表使用中括号[],元组使用小括号(),字典使用大括号{}

2、列表和字典值可以被更改,元组的不能被更改





基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模线性化处理,从而提升纳米级定位系统的精度动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计优化,适用于高精度自动化控制场景。文中还展示了相关实验验证仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模线性化提供一种结合深度学习现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值