64. 最小路径和

本文详细解析了在给定的m x n网格中寻找从左上角到右下角的最小路径和问题。通过动态规划的方法,阐述了如何计算每个格子的最小路径和,并最终得出整个网格的最小路径总和。

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

对于不在第一行和第一列的元素,可以从其上方相邻元素向下移动一步到达,或者从其左方相邻元素向右移动一步到达,元素对应的最小路径和等于其上方相邻元素与其左方相邻元素两者对应的最小路径和中的最小值加上当前元素的值。

https://leetcode-cn.com/problems/minimum-path-sum/solution/zui-xiao-lu-jing-he-by-leetcode-solution/

class Solution {
     public int minPathSum(int[][] grid) {
         if(grid==null||grid.length == 0||grid[0].length == 0){
            return 0;
        }
        int rows = grid.length, columns = grid[0].length;
        int[][] dp = new int[rows][columns];
        dp[0][0] = grid[0][0];
        for(int i = 1; i < rows; i++) {
            dp[i][0] = dp[i - 1][0] + grid[i][0];
        }
        for(int j = 1;j < columns;j++) {
            dp[0][j] = dp[0][j - 1] + grid[0][j];
        }
        for(int i = 1; i < rows; i++) {
            for (int j = 1; j < columns; j++) {
                dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
            }
        }
        return dp[rows - 1][columns - 1];

     
     }

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值