核心方法
put方法
可以发现put方法是委托给putVal()方法的,值得注意的方法是hash(key)的实现。hash(key)相当简单, 它可以接受null作为key,这时hash值为0,而正常的hash值是h ^ (h >>> 16)
public V put (K key, V value ) {
return putVal(hash(key), key, value , false , true );
}
static final int hash(Object key) {
int h;
return (key == null ) ? 0 : (h = key.hashCode()) ^ (h >>> 16 );
}
看看putVal()的实现,tab[i = (n - 1) & hash],这一行是选择一个哈希桶,也能说明为什么HashMap的哈希桶数量必须是2的幂次,如初始化大小是16,16-1的二进制是1111,然后1111 ^ hash 则是桶是索引,值肯定是[0,15]中。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0 )
n = (tab = resize()).length;
if ((p = tab[i = (n - 1 ) & hash]) == null )
tab[i] = newNode(hash, key, value, null );
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this , tab, hash, key, value);
else {
for (int binCount = 0 ; ; ++binCount) {
if ((e = p.next) == null ) {
p.next = newNode(hash, key, value, null );
if (binCount >= TREEIFY_THRESHOLD - 1 )
treeifyBin(tab, hash);
break ;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break ;
p = e;
}
}
if (e != null ) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null )
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null ;
}
static class Node <K ,V > implements Map .Entry <K ,V > {
final int hash;
final K key;
V value;
Node<K,V> next;
}
resize方法
newCap = oldCap << 1,即也会是2的幂次
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null ) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0 ;
if (oldCap > 0 ) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1 ) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1 ;
}
else if (oldThr > 0 )
newCap = oldThr;
else {
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int )(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0 ) {
float ft = (float )newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float )MAXIMUM_CAPACITY ?
(int )ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings ({"rawtypes" ,"unchecked" })
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null ) {
for (int j = 0 ; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null ) {
oldTab[j] = null ;
if (e.next == null )
newTab[e.hash & (newCap - 1 )] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this , newTab, j, oldCap);
else {
Node<K,V> loHead = null , loTail = null ;
Node<K,V> hiHead = null , hiTail = null ;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0 ) {
if (loTail == null )
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null )
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null );
if (loTail != null ) {
loTail.next = null ;
newTab[j] = loHead;
}
if (hiTail != null ) {
hiTail.next = null ;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
get方法
public V get (Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value ;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1 ) & hash]) != null ) {
if (first.hash == hash &&
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null ) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null );
}
}
return null ;
}
remove方法
public V remove (Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null , false , true )) == null ?
null : e.value ;
}
final Node<K,V> removeNode(int hash, Object key, Object value ,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1 ) & hash]) != null ) {
Node<K,V> node = null , e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null ) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break ;
}
p = e;
} while ((e = e.next) != null );
}
}
if (node != null && (!matchValue || (v = node.value ) == value ||
(value != null && value .equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this , tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null ;
}
其他有趣的实现
找到比一个数字大的2的幂次
static final int tableSizeFor(int cap) {
int n = cap - 1 ;
n |= n >>> 1 ;
n |= n >>> 2 ;
n |= n >>> 4 ;
n |= n >>> 8 ;
n |= n >>> 16 ;
return (n < 0 ) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1 ;
}
从别的Map添加到HashMap
else if (s > threshold) resize();可能是先扩容,再添加。
但是问题来了,比如原先是threshold是12,map.size()是300,扩容后threshold是24,添加的时候还是要再次扩容的呀,所以这么做的意义好像不是很大,只是省去一次rehash的时间
public HashMap (Map<? extends K, ? extends V> m) {
this .loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false );
}
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0 ) {
if (table == null ) {
float ft = ((float )s / loadFactor) + 1.0 F;
int t = ((ft < (float )MAXIMUM_CAPACITY) ?
(int )ft : MAXIMUM_CAPACITY);
if (t > threshold)
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value , false , evict);
}
}
}
clear方法
public void clear () {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0 ) {
size = 0 ;
for (int i = 0 ; i < tab.length; ++i)
tab[i] = null ;
}
}
containsValue方法
public boolean containsValue (Object value ) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0 ) {
for (Node<K, V> e : tab) {
for (; e != null ; e = e.next) {
if ((v = e.value ) == value ||
(value != null && value .equals(v)))
return true ;
}
}
}
return false ;
}
getOrDefault()
public V getOrDefault (Object key, V defaultValue) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? defaultValue : e.value ;
}
putIfAbsent()
@Override
public V putIfAbsent (K key, V value ) {
return putVal(hash(key), key, value , true , true );
}
还有大量的函数式方法和大量的红黑树实现代码
函数式代码暂时不感兴趣,而且所有Collection都差不多,写过python或Javascript的,估计很容易看懂。红黑树的代码是特别长又特别难懂,感兴趣看算法,我只要知道是一种二叉平衡树就行了。