# -*-coding:utf-8 -*-
import cv2
import time
import datetime
import numpy as np
camera = cv2.VideoCapture(0)
if (camera.isOpened()):
print('Open')
else:
print('请打开摄像头')
#查看视频size
size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))
print('size:'+repr(size))
es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 4))
kernel = np.ones((5, 5), np.uint8)
pre_frame = None
while(1):
ret, frame = camera.read()
gray_lwpCV = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500))
gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0)
#将当前第一帧作为对比
if pre_frame is None:
pre_frame = gray_lwpCV
continue;
# absdiff把两幅图的差的绝对值输出到另一幅图上面来
img_delta = cv2.absdiff(pre_frame, gray_lwpCV)
thresh = cv2.threshold(img_delta, 10, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, es, iterations=2)
opencv物体图像移动检测
最新推荐文章于 2024-01-05 22:46:16 发布
本文介绍了一种基于Python和OpenCV的实时视频运动目标检测方法。通过获取摄像头视频流,运用高斯差分和背景减除等技术实现运动目标的识别与定位。详细展示了从摄像头读取视频、灰度转换、高斯模糊、背景建模到目标检测的全过程。

最低0.47元/天 解锁文章
1954

被折叠的 条评论
为什么被折叠?



