lintcode - 落单的数 III

本文介绍了一种高效算法,用于从2*n+2个数中找出仅出现一次的两个数,采用位运算实现O(n)时间复杂度与O(1)空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:给出2*n + 2个的数字,除其中两个数字之外其他每个数字均出现两次,找到这两个数字。

样例:给出 [1,2,2,3,4,4,5,3],返回 1和5

挑战 :O(n)时间复杂度,O(1)的额外空间复杂度


我们之前已经做过两道类似的题目,分别是落单的数落单的数 II,思路都是位运算。这道题也不例外。


不过这道题想出方法来倒还真不太容易,至少我当时没想出来,也是后来查了别人的做法,才知道的,在此,我将别人的方法用我的话再说一遍,努力让它更好理解。


当然,首先想到的就是跟之前2*n + 1个数时的情况一样(详见:落单的数),先将所有的数异或一遍,这样,我们就将数组中那两个不同的数异或到了一个结果中(此处不懂的话看刚才给的链接)。现在的难处在于无法将这个结果拆开,拆成我们想要的那两个不同的数。


怎么办呢?我们如果对二进制足够熟悉,就不难得出这样一个结论,这个异或的结果(为方便描述,记为Xor)的二进制位中为1的位,必然是这两个不同的数(方便起见,记为first 和 second)不同的位,也就是说,first和second在这些位中一个是1,一个是0。不失一般性,我们就找Xor中第一个为1的位,将这个位数记为k.


那么,一定隐含了这样一个逻辑:在成对的2*n个数当中,一定有2x个数的第k位是1,而有2y个数的第k位是0,其中,x + y = n,所以,


换个说法,既然Xor的第k为是1,那我们不妨假设first的第k位是0,而second的第k位是1。那么,如果令x个数第k位为1的数,和second一起,与Xor异或,就能得到first,这个道理与2n + 1时是一样的。而再令first与Xor异或,就能得到second.


于是,可以按以下步骤操作:

1. 将数组中所有的数异或,得到一个结果,记为Xor

2. 查出Xor中第一个为1的位(也就是为1的最小的位),记为k

3. 查出数组中所有第k位为1的数(这里面当然包括second)与Xor异或,得到first

4. 将first与Xor异或,得到second


写出代码即可:

class Solution:
    """
    @param A : An integer array
    @return : Two integer
    """
    def singleNumberIII(self, A):

        first, second = 0, 0
        Xor = 0

        # for循环求出不同的两个数异或的结果
        for i in A:
            Xor ^= i

        temp = Xor
        k = 1

        # 检查temp的二进制位中第一个为1的位置,记为k
        while temp & 1 != 1:
            k += 1
            temp >>= 1

        # 设置一个整数,此数的第k位是1,其他位是0
        firstHelper = pow(2, k - 1)

        # 令A中所有第k位为1的数异或,并将这个异或的结果与Xor异或,可得到第一个数
        for i in A:
            if i & firstHelper == firstHelper:
                first ^= i
        first ^= Xor

        # 第一个数与Xor异或,得到第二个数
        second = first ^ Xor
        return first, second
        # write your code here


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值