674 Longest Continuous Increasing Subsequence

本文介绍了一种算法,用于查找未排序整数数组中最长连续递增子序列的长度。通过示例展示了如何使用该算法解决问题,并提供了一个简洁的Java实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).

Example 1:

Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3. 
Even though [1,3,5,7] is also an increasing subsequence, it's not a continuous one where 5 and 7 are separated by 4. 

Example 2:

Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1. 
Note: Length of the array will not exceed 10,000.

:

class Solution {
  public int findLengthOfLCIS(int[] nums) {
    if (nums.length < 1) { return 0; }
    else if (nums.length < 2) { return 1; }
    int result = 0;
    int tmp = 1;
    for (int i = 1; i < nums.length; i++) {
      tmp = nums[i - 1] < nums[i] ? tmp + 1 : 1;
      result = tmp > result ? tmp : result;
    }
    return result;
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值