B - Out of Hay POJ - 2395

帮助Bessie规划路线,使用Kruskal算法找出连接N个农场的最小生成树中最大边的长度,确保她携带的水量足够通过最长的道路。
The cows have run out of hay, a horrible event that must be remedied immediately. Bessie intends to visit the other farms to survey their hay situation. There are N (2 <= N <= 2,000) farms (numbered 1..N); Bessie starts at Farm 1. She'll traverse some or all of the M (1 <= M <= 10,000) two-way roads whose length does not exceed 1,000,000,000 that connect the farms. Some farms may be multiply connected with different length roads. All farms are connected one way or another to Farm 1. 

Bessie is trying to decide how large a waterskin she will need. She knows that she needs one ounce of water for each unit of length of a road. Since she can get more water at each farm, she's only concerned about the length of the longest road. Of course, she plans her route between farms such that she minimizes the amount of water she must carry. 

Help Bessie know the largest amount of water she will ever have to carry: what is the length of longest road she'll have to travel between any two farms, presuming she chooses routes that minimize that number? This means, of course, that she might backtrack over a road in order to minimize the length of the longest road she'll have to traverse.
Input
* Line 1: Two space-separated integers, N and M. 

* Lines 2..1+M: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, describing a road from A_i to B_i of length L_i.
Output
* Line 1: A single integer that is the length of the longest road required to be traversed.
Sample Input
3 3
1 2 23
2 3 1000
1 3 43
Sample Output
43
题意,找到所有村庄中一条最长的路,用Kruskal算法,求最小生成树,刚开始的时候要把权值从小到大排序即可,然后求最大的一个权值,就是题中所要求的。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct note
{
    int u;
    int v;
    int w;
} q[10010];
int f[2010];
int cmp(note a,note b)
{
    return a.w<b.w;
}
int find(int v)
{
    if(f[v]==v)return v;
    else return find(f[v]);
}
int merge(int x,int y)
{
    int t1,t2;
    t1=find(x);
    t2=find(y);
    if(t1!=t2)
    {
        f[t2]=t1;
        return 1;
    }
    return 0;
}
int main()
{
    int i,k,n,m;
    while(~scanf("%d%d",&n,&m))
    {
        for(i=0; i<m; i++)
            scanf("%d%d%d",&q[i].u,&q[i].v,&q[i].w);
        sort(q,q+m,cmp);   //按照权值从小到大排序
        for(i=1; i<=n; i++)
            f[i]=i;
        int count=0;
        for(i=0; i<m; i++)
        {
            if(merge(q[i].u,q[i].v))//并查集看是否被连通
            {
                count++;
                if(count==n-1)
                {
                    k=i;    //最长的一条路的下标
                    break;
                }
            }
        }
        printf("%d\n",q[k].w);
    }
}

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值