华为OD机试 - 放苹果 - 递归(Java 2024 E卷100分)

这篇博客介绍了如何解决华为OD机试中的一道题目,即如何用递归方法计算将m个苹果放入n个盘子的不同分法。文章详细阐述了输入输出描述,解题思路,并提供了Java算法源码,同时指出当苹果数等于0或盘子数等于1时的特殊情况。博主还分享了效果展示,并预告了下一篇文章的内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、题目描述

把m个同样的苹果放在n个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?

注意:如果有7个苹果和3个盘子,(5,1,1)和(1,5,1)被视为是同一种分法。

数据范围:0≤m≤10 ,1≤n≤10 。

二、输入描述

输入两个int整数。

三、输出描述

输出结果,int型。

四、解题思路

  1. 读取输入的整数 m 和 n;
  2. 创建一个递归函数 count(m, n) 来计算当前持有 m 个苹果,有 n 个盘子可供存放时的摆放方案数;
  3. 定义递归函数的终止条件:
    • 当苹果数 m 等于 0 时,表示什么都不做,返回 1 种方案;
    • 当盘子数 n 等于 1 时,剩下的苹果 m 只能全部摆放在这个盘子中,返回 1 种方案;
  4. 当盘子数 n 大于苹果数 m 时,一定有 n - m 个盘子空着,而且每个盘子都一样,因此 count(m, n) 等于 count(m, n-1);
  5. 当盘子数 n 小于等于苹果数 m 时,有两种情况:
    • 至少有一个盘子可以不放苹果,因此 count(m, n) 等于 count(m, n-1);
    • 至少每个盘子都有一个苹果,摆放后剩下的苹果数为 m - n,因此 count(m, n) 等于 count(m-n, n);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哪 吒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值