XGBoost
https://github.com/dmlc/xgboostXGBoost的原理
http://djjowfy.com/2017/08/01/XGBoost%E7%9A%84%E5%8E%9F%E7%90%86/
陈天奇讲解 XGBoost 与 Boosted Tree
http://www.52cs.org/?p=429
XGBoost:参数解释
https://blog.youkuaiyun.com/zc02051126/article/details/46711047
XGBoost的demo
https://github.com/dmlc/xgboost/tree/master/demo/guide-python
https://github.com/dmlc/xgboost/blob/master/doc/python/python_intro.md
调参指南
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
LightGBM
https://blog.youkuaiyun.com/niaolianjiulin/article/details/76584785
https://zhuanlan.zhihu.com/p/25308051
http://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650719786&idx=3&sn=ab1c5a77237dc4b2ee5ae12c7a68ff87&chksm=871b0254b06c8b42d5a4fdf3327f7284c9ffbe72fe7911301d368b157024b32923d88401c2a8&scene=0&open_source=weibo_search
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM/tree/master/python-package 官方的python封装
https://github.com/ArdalanM/pyLightGBM 非官方的python封装
这个东西被视为比xgboost更好的GBDT开源实现,同时微软出品。
对比细节可参考
http://blog.youkuaiyun.com/chary8088/article/details/54316708
还有人专门写了代码PK
https://github.com/tks0123456789/XGBoost_vs_LightGBM
https://github.com/Microsoft/LightGBM/wiki/Features
配置和调参
https://github.com/Microsoft/LightGBM/wiki/Configuration
python范例
https://github.com/Microsoft/LightGBM/blob/master/docs/Python-intro.md
相对xgboost来说,有以下特点:
更好的准备率
消耗更少的内存
支持并行学习
GBDT
GBDT是使用最多的模型之一,特意搜集了GBDT的一些博文
https://www.cnblogs.com/pinard/p/6140514.html
https://www.cnblogs.com/ModifyRong/p/7744987.html
特别注意GBDT容易过拟合,新的回归树不断拟合之前的残差,在训练集上的误差可能逐渐变为0,导致过拟合。GBDT也有相应避免过拟合的正则化方法。正则化的方式有好几种
http://blog.youkuaiyun.com/thriving_fcl/article/details/51255513
GBDT的调参和调用
https://www.cnblogs.com/DjangoBlog/p/6201663.html
http://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html
xgboost是对GBDT做了一些改进,所以xgboost需要和GBDT一起比较,详细看下一篇博文