交叉熵、相对熵(KL散度)、JS散度和Wasserstein距离

本文详细介绍了信息熵、相对熵(KL散度)、交叉熵、JS散度以及Wasserstein距离的概念及其在机器学习中的应用。信息熵衡量随机变量的混乱程度,KL散度和交叉熵用于评估分布的差异,JS散度解决非对称问题,而Wasserstein距离即使在分布无重叠时也能有效度量距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 信息量

       任何事件都会承载着一定的信息量,包括已经发生的事件和未发生的事件,只是它们承载的信息量会有所不同。如昨天下雨这个已知事件,因为已经发生,既定事实,那么它的信息量就为0。如明天会下雨这个事件,因为未有发生,那么这个事件的信息量就大。从上面例子可以看出信息量是一个与事件发生概率相关的概念,而且可以得出,事件发生的概率越小,其信息量越大。
       假设XXX是一个离散型随机变量,则定义事件X=x0X=x_0X=x0的信息量为:
I(x0)=−log(p(x0))I(x_0)=-log(p(x_0))I(x0)=log(p(x0))

2 信息熵

       如果我们把一个事件的所有可能性罗列出来,就可以求得该事件信息量的期望,信息量的期望就是信息熵,所以信息熵的公式为:
H(x)=−∑i=1np(xi)log(p(xi))H(x)=-\sum_{i=1}^np(x_i)log(p(x_i))H(x)=i=1np(xi)log(p(xi))
       信息熵是衡量随机变量分布的混乱程度,是随机分布各事件发生的信息量的期望值,随机变量的取值个数越多,状态数也就越多,信息熵就越大,混乱程度就越大。当随机分布为均匀分布时,熵最大

3 相对熵(KL散度)

       相对熵又称KL散度,如果我们对于同一个随机变量 x 有两个单独的概率分布 P(x) 和 Q(x),我们可以使用 KL 散度来衡量这两个分布的差异。在机器学习中,P往往用来表示样本的真实分布,Q用来表示模型所预测的分布,那么KL散度就可以计算两个分布的差异,也就是Loss,取值范围是(0,正无穷)。公式如下:
DKL(p∣∣q)=∑i=1np(xi)log(p(xi)q(xi))D_{KL}(p||q)=\sum_{i=1}^{n}p(x_i)log(\frac{p(x_i)}{q(x_i)})DKL(pq)=i=1np(xi)log(

### 信息熵 信息熵是一种衡量随机变量不确定性的指标。对于离型随机变量 \(X\),其概率质量函数为 \(P(X)\),则信息熵定义如下: \[ H(X) = - \sum_{i=1}^{n} P(x_i) \log_2(P(x_i)) \] 其中,\(P(x_i)\) 表示事件 \(x_i\) 发生的概率[^1]。 信息熵越高,则系统的不确定性越大;反之亦然。 --- ### 交叉熵 交叉熵是用来衡量两个概率分布之间差异的一种方法,在机器学习中广泛应用于分类任务中的损失计算。假设真实分布为 \(P\),预测分布为 \(Q\),那么交叉熵可以表示为: \[ H(P, Q) = - \sum_{i=1}^{n} P(x_i) \log(Q(x_i)) \] 这里需要注意的是,交叉熵不仅依赖于真实的概率分布 \(P\),还取决于模型预测的概率分布 \(Q\)。因此,它是评估模型性能的重要工具之一[^2]。 --- ### KL KL (Kullback-Leibler divergence),也称为相对熵,用于量化两个概率分布之间的差异程。给定两个概率分布 \(P\) \(Q\),KL 的公式为: \[ D_{KL}(P || Q) = \sum_{i=1}^{n} P(x_i) \log{\frac{P(x_i)}{Q(x_i)}} \] 值得注意的是,KL 具有 **非对称性** **非负性** 的特点。即通常情况下 \(D_{KL}(P || Q) \neq D_{KL}(Q || P)\)[^3]。 --- ### JS JS (Jensen-Shannon divergence)是对称版本的 KL ,解决了 KL 不对称的问题。它通过引入中间分布来实现这一点。设 \(M = \frac{1}{2}(P + Q)\),则 JS 可写成: \[ D_{JS}(P || Q) = \frac{1}{2} D_{KL}(P || M) + \frac{1}{2} D_{KL}(Q || M) \] 由于 JS 基于 KL 构建,所以它的取值范围在 \([0, 1]\) 内,并且满足对称性有限性条件。 --- ### 定义区别与联系 | 指标 | 描述 | |------------|------------------------------------------------------------------------------------------| | **信息熵** | 测量单个随机变量本身的不确定性 | | **交叉熵** | 量两个概率分布间的差异,主要用于监督学习中的目标优化 | | **KL ** | 计算一个分布相对于另一个分布的信息增益或“距离”,是非对称的 | | **JS ** | 基于 KL 改进而来,解决非对称问题并提供更稳定的数值表现 | 这些概念都属于信息论范畴,但在实际应用中有不同的侧重点。例如,交叉熵被频繁用作神经网络训练的目标函数,而 KL 更多地出现在变分推断等领域。 --- ### 在机器学习学习中的作用 - **信息熵**:帮助理解数据集内部结构以及特征的重要性。 - **交叉熵**:作为分类任务的核心损失函数,指导模型参数调整以最小化误差。 - **KL **:适用于生成对抗网络 (GANs) 或变分自编码器 (VAEs) 中隐空间分布匹配的任务。 - **JS **:相比 KL 更加稳定可靠,尤其适合处理不平衡样本情况下的相似比较场景。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值