LeetCode 300. Longest Increasing Subsequence

本文介绍了一种求解最长递增子序列长度的算法,给出了一段Java代码实现,并指出算法的时间复杂度为O(n^2)。该问题旨在找出数组中最长递增子序列的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

注意:该问题求的是递增子序列而不是递增子串

Java代码如下所示:

public class Solution {
    public int lengthOfLIS(int[] nums) {
        if(nums == null || nums.length == 0) {
        	return 0;
        }
        int max = 1;
        int[] dp = new int[nums.length];
        dp[0] = 1;
        for(int i = 1; i < dp.length; i++) {
        	int preMax = 0;
        	for(int j = 0; j < i; j++) {
        		if(nums[j] < nums[i] && preMax < dp[j]) {
        			preMax = dp[j];
        		}
        	}
        	dp[i] = preMax + 1;
        	if(max < dp[i]) {
        		max = dp[i];
        	}
        }
        return max;
    }
    
    public static void main(String[] args) {
    	Solution solution = new Solution();
		int[] nums = {10, 9, 2, 5, 3, 7, 101, 18};
		System.out.println(solution.lengthOfLIS(nums));
	}
}empty


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值