from numpy import *def loadDataSet():#简单的测试数据集
return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]def createC1(dataSet):
C1 = [] for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return list(map(frozenset, C1))#frozenset一经创建不可修改。所以C1为每个项构建了一个不变的集合。而且这个集合可以当键值使用,而set是做不到的。def scanD(D, Ck, minSupport):#包含候选集合的列表,数据集CK,最小支持度(包含该项集) ssCnt = {} for tid in D:#遍历候选集 for can in Ck:#遍历数据集的所有交易记录 if can.issubset(tid): if can not in ssCnt: ssCnt[can]=1 else: ssCnt[can] += 1 numItems = float(len(D)) retList = [] supportData = {} for key in ssCnt:#计算所有项集支持度 support = ssCnt[key]/numItems if support >= minSupport: retList.insert(0,key) supportData[key] = support return retList, supportDatadef aprioriGen(Lk, k): #输入频繁集列表和项集元素,输出CK retList = [] lenLk = len(Lk) for i in range(lenLk): for j in range(i+1, lenLk): L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2] L1.sort(); L2.sort() if L1==L2: #前k-2相同时合并集合。用k-2使遍历次数最少 retList.append(Lk[i] | Lk[j]) return retListdef apriori(dataSet, minSupport = 0.5): C1 = createC1(dataSet) D = list(map(set, dataSet))#将set()映射到dataSet列表中的每一项
L1, supportData = scanD(D, C1, minSupport)
L = [L1] k = 2 while (len(L[k-2]) > 0):
Ck = aprioriGen(L[k-2], k)
Lk, supK = scanD(D, Ck, minSupport)
supportData.update(supK)
L.append(Lk)
k += 1 return L, supportDatadef generateRules(L, supportData, minConf=0.7):#从频繁项中挖掘关联规则。频繁项集列表,包含哪些频繁项集支持数据的字典,最小可信度阈值 bigRuleList = []#规则 for i in range(1, len(L)):#只获取有两个或者更多元素的集合(单个无法建立规则) for freqSet in L[i]:
H1 = [frozenset([item]) for item in freqSet]#只含单个元素的列表H1
if (i > 1):
rulesFromConseq(freqSet, H1, supportData, bigRuleList, minConf)
else: calcConf(freqSet, H1, supportData, bigRuleList, minConf)
return bigRuleList
def calcConf(freqSet, H, supportData, brl, minConf=0.7):#评估规则
prunedH = [] for conseq in H:
conf = supportData[freqSet]/supportData[freqSet-conseq]
if conf >= minConf:
print (freqSet-conseq,'-->',conseq,'conf:',conf)
brl.append((freqSet-conseq, conseq, conf))
prunedH.append(conseq)
return prunedHdef rulesFromConseq(freqSet, H, supportData, brl, minConf=0.7):#生成候选规则集合
m = len(H[0]) if (len(freqSet) > (m + 1)): #尝试进一步合并
Hmp1 = aprioriGen(H, m+1)#创造Hm+1条新候选规则
Hmp1 = calcConf(freqSet, Hmp1, supportData, brl, minConf)
if (len(Hmp1) > 1):
rulesFromConseq(freqSet, Hmp1, supportData, brl, minConf)def pntRules(ruleList, itemMeaning):
for ruleTup in ruleList:
for item in ruleTup[0]:
print (itemMeaning[item])
print (" -------->")
for item in ruleTup[1]:
print (itemMeaning[item])
print ("confidence: %f" % ruleTup[2])
print()dataSet=loadDataSet()L,suppData=apriori(dataSet,minSupport=0.5)print(L)print(suppData)rules=generateRules(L,suppData,minConf=0.7)print(rules)