前言
本文用Python语言实现二分查找,以及二分搜索树,以及二叉树的前序中序后序遍历,并增加辅助测试函数验证,具体完整代码可以去我的 GitHub 网站下载。
程序
1. 二分查找
# 二分查找 有序数组arr 查找target
def binarySearch(arr, n, target):
# 在arr[l...r]中查找target
l = 0
r = n - 1
while (l <= r):
# mid = (l+r) // 2 # 此处可能产生整型溢出
mid = l + (r - l) // 2
if (arr[mid] == target):
return mid
if (target < arr[mid]):
r = mid - 1
else:
l = mid + 1
# 没找到 返回-1
return -1
2. 二分搜索树
# 二分搜索树
class BST:
# 树中的节点为私有的类 外界不需要了解二分搜索树的具体实现
class Node:
def __init__(self, key, value):
self.key = key
self.value = value
self.left = self.right = None
def __init__(self):
self.__root = None
self.__count = 0
def size(self):
return self.__count
def isEmpty(self):
return self.__count == 0
# 插入一个新的节点 采用递归结构, 返回插入新节点后的二叉搜索树的根
def insert(self, key, value):
self.__root = self.__insert(self.__root, key, value)
# 以node为根的二分搜索树中是否包含键值为key的节点 使用递归算法
def contain(self, key):
return self.__contain(self.__root, key)
# 以node为根结点的二分搜索树中查找key对应的value, 若value不存在 返回null
def search(self, key):
return self.__search(self.__root, key)
# 二叉树的前序遍历
def preOrder(self):
self.__preOrder(self.__root)
# 二叉树的中序遍历
def inOrder(self):
self.__inOrder(self.__root)
# 二叉树的后序遍历
def postOrder(self):
self.__postOrder(self.__root)
# 二分搜索树的层序遍历 利用队列的数据结构
def levelOrder(self):
# 初始化一个队列
q = Queue()
q.put(self.__root)
while not q.empty():
node = q.get()
print(node.key)
if node.left is not None:
q.put(node.left)
if node.right is not None:
q.put(node.right)
# 寻找二分搜索树的最小键值
def minimum(self):
if self.__count <= 0:
print('二分搜索树里面没有元素了!!!')
raise IndexError
minNode = self.__minimum(self.__root)
return minNode.key
# 寻找树中的最大键值
def maxmum(self):
if self.__count <= 0:
print('二分搜索树里面没有元素了!!!')
raise IndexError
maxNode = self.__maxmum(self.__root)
return maxNode.key
# 从二分搜索属树种删除最小值所在节点
def removeMin(self):
if self.__root is not None:
self.__root = self.__removeMin(self.__root)
def removeMax(self):
if self.__root is not None:
self.__root = self.__removeMax(self.__root)
# 从二分搜索树种删除键值为key的节点
def remove(self, key):
self.__root = self.__remove(self.__root, key)
3. 二分搜索树辅助函数
# 删除以node为根的二分搜索树种键值为key的节点,递归算法
# 返回删除后的节点后新的二分搜索树
def __remove(self, node, key):
if node is None:
return None
# 递归寻找
if key > node.key:
node.right = self.__remove(node.right, key)
return node
elif key < node.key:
node.left = self.__remove(node.left, key)
return node
else: # key==node.key的情况
# 待删除的节点左子树为空
if node.left is None:
rightNode = node.right
node.right = None
self.__count -= 1
return rightNode
# 待删除的节点右子树为空
if node.right is None:
leftNode = node.left
node.left = None
self.__count -= 1
return leftNode
# 待删除的节点左右节点都不为空的情况
# 找到比待删除节点大的最小节点 即待删除节点右子树的最小节点
# 用这个节点顶替待删除节点的位置
successor = self.Node(node.key, node.value)
self.__count += 1
successor.right = self.__removeMin(node.right)
successor.left = node.left
node.left = node.right = None
self.__count -= 1
return successor
# 删除掉以node为根的二分搜索书中的最小节点
# 返回删除节点后的二分搜索树的根节点
def __removeMin(self, node):
if node.left is not None:
rightNode = node.right
print(node.key)
print('已经删除')
node.right = None
self.__count -= 1
return rightNode
node.left = self.__removeMin(node.left)
return node
# 删除掉以node为根的二分搜索书中的最大节点
# 返回删除节点后的二分搜索树的根节点
def __removeMax(self, node):
if node.right is not None:
leftNode = node.left
print(node.key)
print('已经删除')
node.left = None
self.__count -= 1
return leftNode
node.right = self.__removeMax(node.right)
return node
def __minimum(self, node):
if (node.left is None):
return node
return self.__minimum(node.left)
def __maxmum(self, node):
if node.right is None:
return node
return self.__maxmum(node.right)
def __insert(self, node, key, value):
if (node is None):
self.__count += 1
return self.Node(key, value)
if (key == node.key):
node.value = value
elif (key > node.key):
node.right = self.__insert(node.right, key, value)
else:
node.left = self.__insert(node.left, key, value)
return node
def __contain(self, node, key):
if node is None:
return False
if (key == node.key):
return True
elif (key > node.key):
return self.__contain(node.right, key)
else:
return self.__contain(node.left, key)
def __search(self, node, key):
if node is None:
return None
if key == node.key:
return node.value
elif key > node.key:
return self.__search(node.right, key)
else:
return self.__search(node.left, key)
def __preOrder(self, node):
if node is not None:
print(node.key)
self.__preOrder(node.left)
self.__preOrder(node.right)
def __inOrder(self, node):
if node is not None:
self.__inOrder(node.left)
print(node.key)
self.__inOrder(node.right)
def __postOrder(self, node):
if node is not None:
self.__postOrder(node.left)
self.__postOrder(node.right)
print(node.key)
4. main函数
if __name__ == '__main__':
n = 100
start = 0
end = 100
# arr = genNearlyOrderArray(n, swapTimes=50000)
# arr = genRandomArray(n, start, end)
arr=np.random.randint(end, size=n)
arr2 = arr.copy()
arr3 = arr.copy()
arr4 = arr.copy()
arr5 = arr.copy()
print(arr)
bst = BST()
# 测试的搜索二叉树的键类型为int 值类型为string
for i in range(n):
bst.insert(arr[i], str(arr[i]))
maxN = bst.maxmum()
print(maxN)
bst.remove(99999)
print(bst.maxmum())
结果


398

被折叠的 条评论
为什么被折叠?



