COMP1036 Custom Library System Autumn 2024Processing

部署运行你感兴趣的模型镜像

Java Python School of Computer Science

Computer Fundamentals (COMP1036)

Autumn 2024

Custom Library System

Deadline:  17:00 Friday 15th  of November, 2024

Description

You have used combinatorial logic to construct various logic circuits that form. the basis of a computer in previous exercises. In this exercise, you will implement a library system with some simple functionalities. Additionally, you will incorporate arithmetic operations into your design. The inputs and outputs of the library system can be found in Figure 1.

Figure 1: Library System

1 Load Data to Registers

Turn on Load (load  =  1) to start  loading inBookID, inBookNum,  and in- BookPri into the Library System’s registers, respectively.

Input:

1.  A 16-Bit version of a book ID number called inBookID.

2.  A 16-Bit version of a book quantity called inBookNum.

3.  A 16-Bit version of a book price called inBookPri.

4.  A 1-Bit switch for loading the data called load.

Turn on the load (load = 1), then input inBookID, inBookNum, and in- BookPri, which should be stored in the registers, respectively.

Output:

1.  A 16-Bit version of a book ID number called outBookID.

2.  A 16-Bit version of a book quantity called outBookNum.

3.  A 16-Bit version of a book price called outBookPri.

4.  A 16-Bit version of total book value called outTotalVal.

Figure 2: Load data to register.

(6 marks)

2 Store Data to RAM

Based on Task 1, turn on the store (store = 1) with the assigned address; the data should be stored in the RAMs, respectively.

Input:

1.  A 1-Bit switch for storing the data called store.

2.  A 3-Bit value assigned to address that stores each value in RAM.

Turn on the store (store = 1) and turn off load (load = 0) with the assigned address; inBookID, inBookNum, and inBookPri should be stored in the RAMs. Meanwhile, outBookID, outBookNum, and outBookPri will display the stored data, and the default value of outTotalVal is 0.  For example,  after loading the above input into the register, you should set store = 1 and address = 2.  The input data will be stored in the RAMs, with outBookID = 10003, outBookNum = 2, outBookPri = 99, and outTotalVal = 0.  Figures 3 and 4 illustrate the loading of data to the register and RAM, respectively.

Output: Book information is based on the assigned address of RAM.

1.  A 16-Bit version of a book ID number called outBookID.

2.  A 16-Bit version of a book quantity called outBookNum.

3.  A 16-Bit version of a book price called outBookPri.

4.  A 16-Bit version of total book value called outTotalVal.

(6 marks)

Figure 3: Load data to register.

Figure 4:  Store data to RAM with assigned address 2 and display the stored data in output pins.

3    Store inBookNum × inBookPri to RAM

Based on Task 2, inBookNum × inBookPri should be calculated and stored in the RAM as well.

Input:

1.  A 16-Bit version of a book quantity called inBookNum.

2.  A 16-Bit version of a book price called inBookPri.

For example, if we have the following input data:

1. 10001 3 29

2. 10002 5 19

3. 10003 2 99

Then the data stored in the RAM should be as follows:

1. 10001 3 29 87

2. 10002 5 19 95

3. 10003 2 99 198

(5 marks)

4    Sequential Load from RAM

Based  on Task 3,  implement  sequential  load  functionality.    The  values  of in- COMP1036 Custom Library System Autumn 2024Processing BookNum × inBookPri will be loaded from RAM according to the assigned address and stored to registers.  load0-load7 are the switches that control loading data from addresses 0 to 7 of RAM to the registers, respectively.

Input:

1.  A 3-Bit value assigned to address that stores each value in RAM.

2.  A 1-Bit switch for loading data, called load0, from address 0 in RAM.

3.  A 1-Bit switch for loading data, called load1, from address 1 in RAM.

4.  A 1-Bit switch for loading data, called load2, from address 2 in RAM.

5.  A 1-Bit switch for loading data, called load3, from address 3 in RAM.

6.  A 1-Bit switch for loading data, called load4, from address 4 in RAM.

7.  A 1-Bit switch for loading data, called load5, from address 5 in RAM.

8.  A 1-Bit switch for loading data, called load6, from address 6 in RAM.

9.  A 1-Bit switch for loading data, called load7, from address 7 in RAM.

For example, we have following data stored in the RAM:

1. 10001 3 29 87

2. 10002 5 19 95

3. 10003 2 99 198

In Figure 5, set load1 = 1 and address = 1.  The value 95 will be loaded to a register from RAM; meanwhile, outBookID, outBookNum, outBookPri and outTotalVal will display 10002, 5, 19, and 95, respectively.

Output: Book information is based on the assigned address of RAM.

1.  A 16-Bit version of a book ID number called outBookID.

2.  A 16-Bit version of a book quantity called outBookNum.

3.  A 16-Bit version of a book price called outBookPri.

4.  A 16-Bit version of total book value called outTotalVal.

(8 marks)

Figure 5: Load data from RAM to register.

5    Sum of the inBookNum × inBookPri

Based on Task 4, calculate the total value of the books stored in RAM.

Input:

1.  A 3-Bit value assigned to address that stores each value in RAM.

2.  A 1-Bit switch for loading data, called load0, from address 0 in RAM.

3.  A 1-Bit switch for loading data, called load1, from address 1 in RAM.

4.  A 1-Bit switch for loading data, called load2, from address 2 in RAM.

5.  A 1-Bit switch for loading data, called load3, from address 3 in RAM.

6.  A 1-Bit switch for loading data, called load4, from address 4 in RAM.

7.  A 1-Bit switch for loading data, called load5, from address 5 in RAM.

8.  A 1-Bit switch for loading data, called load6, from address 6 in RAM.

9.  A 1-Bit switch for loading data, called load7, from address 7 in RAM.

For example, we have following data stored in the RAM:

1. 10001 3 29 87

2. 10002 5 19 95

3. 10003 2 99 198

Retrieve data from RAMs sequentially, calculate 87 + 95 + 198 = 380 and outTotalVal will display the sum 380.  Meanwhile, the most recently retrieved data (address = 2) will be displayed in outBookID = 10003, outBookNum = 2, and outBookPri = 99, respectively.

Output: Book information is based on the assigned address of RAM.

1.  A 16-Bit version of a book ID number called outBookID.

2.  A 16-Bit version of a book quantity called outBookNum.

3.  A 16-Bit version of a book price called outBookPri.

4.  A 16-Bit version of total book value called outTotalVal.

(5 marks)

Figure 6: Calculate total value.

Submission

You should zip all your files into one zip file to “Coursework1 Assignment” .  You should name your file as:  YOURSTUDENTID YOURNAME.zip.  Your zip file should in- clude:

1. one master hdl file called CW.hdl file

2.  all additional hdl files used by CW.hdl

3. one readme.txt file if needed (optional)

Submit your zip file onto the Moodle submission page.  Please note that every next submission overwrites all the files in the previous one. If you submit several times, make sure that your last submission includes all the necessary files.   Include all required chips, instructions for use, and any instruction text file if necessary.  For late submission, the standard late submission policy applies,i.e. 5% mark deduction for every 24 hours         

您可能感兴趣的与本文相关的镜像

Python3.9

Python3.9

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

内容概要:本文详细介绍了一个基于Java和Vue的联邦学习隐私保护推荐系统的设计与实现。系统采用联邦学习架构,使用户数据在本地完成模型训练,仅上传加密后的模型参数或梯度,通过中心服务器进行联邦平均聚合,从而实现数据隐私保护与协同建模的双重目标。项目涵盖完整的系统架构设计,包括本地模型训练、中心参数聚合、安全通信、前后端解耦、推荐算法插件化等模块,并结合差分隐私与同态加密等技术强化安全性。同时,系统通过Vue前端实现用户行为采集与个性化推荐展示,Java后端支撑高并发服务与日志处理,形成“本地训练—参数上传—全局聚合—模型下发—个性化微调”的完整闭环。文中还提供了关键模块的代码示例,如特征提取、模型聚合、加密上传等,增强了项目的可实施性与工程参考价值。 适合人群:具备一定Java和Vue开发基础,熟悉Spring Boot、RESTful API、分布式系统或机器学习相关技术,从事推荐系统、隐私计算或全栈开发方向的研发人员。 使用场景及目标:①学习联邦学习在推荐系统中的工程落地方法;②掌握隐私保护机制(如加密传输、差分隐私)与模型聚合技术的集成;③构建高安全、可扩展的分布式推荐系统原型;④实现前后端协同的个性化推荐闭环系统。 阅读建议:建议结合代码示例深入理解联邦学习流程,重点关注本地训练与全局聚合的协同逻辑,同时可基于项目架构进行算法替换与功能扩展,适用于科研验证与工业级系统原型开发
源码来自:https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值