python-20-多任务(线程和进程)

视频在线学习地址:https://www.bilibili.com/video/BV1Yp4y117BA
————————————————
——Python全套:BV1jZ4y1p7zQ

学习目标

  • 能够说出进程和线程的概念
  • 能够创建和管理进程
  • 能够实现不同进程之间的通信
  • 能够创建线程并实现不同线程间通信
  • 能够解决线程安全问题

线程访问全局变量

import threading
g_num = 0
def test(n):
    global g_num
    for x in range(n):
        g_num += x
        g_num -= x
    print(g_num)

if __name__ == '__main__':
    t1 = threading.Thread(target=test, args=(10,))
    t2 = threading.Thread(target=test, args=(10,))
    t1.start()
    t2.start()

在一个进程内的所有线程共享全局变量,很方便在多个线程间共享数据。缺点就是,线程是对全局变量随意遂改可能造成多线程之间对全局变量的混乱(即线程非安全)。

线程的安全问题

import threading
import time

ticket = 20


def sell_ticket():
    global ticket
    while True:
        if ticket > 0:
            time.sleep(0.5)
            ticket -= 1
            print('{}卖了一张票,还剩{}'.format(threading.current_thread().name, ticket))
        else:
            print('{}票卖完了'.format(threading.current_thread().name))
            break


for i in range(5):
    t = threading.Thread(target=sell_ticket, name='thread-{}'.format(i + 1))
    t.start()

同步

当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制。同步就是协同步调,按预定的先后次序进行运行。线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。

互斥锁

互斥锁为资源引入一个状态:锁定/非锁定

某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:

# 创建锁
mutex = threading.Lock()
# 锁定
mutex.acquire()
# 释放
mutex.release()
Copy

注意:

  • 如果这个锁之前是没有上锁的,那么acquire不会堵塞
  • 如果在调用acquire对这个锁上锁之前 它已经被 其他线程上了锁,那么此时acquire会堵塞,直到这个锁被解锁为止。

  • 和文件操作一样,Lock也可以使用with语句快速的实现打开和关闭操作。

使用互斥锁解决卖票问题

import threading
import time

ticket = 20
lock = threading.Lock()


def sell_ticket():
    global ticket
    while True:
        lock.acquire()
        if ticket > 0:
            time.sleep(0.5)
            ticket -= 1
            lock.release()
            print('{}卖了一张票,还剩{}'.format(threading.current_thread().name, ticket))
        else:
            print('{}票卖完了'.format(threading.current_thread().name))
            lock.release()
            break


for i in range(5):
    t = threading.Thread(target=sell_ticket, name='thread-{}'.format(i + 1))
    t.start()
上锁过程:
当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。

每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。

线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。

总结
锁的好处:

确保了某段关键代码只能由一个线程从头到尾完整地执行
锁的坏处:

阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。
由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁。

线程间通信

线程之间有时需要通信,操作系统提供了很多机制来实现进程间的通信,其中我们使用最多的是队列Queue.

Queue的原理

Queue是一个先进先出(First In First Out)的队列,主进程中创建一个Queue对象,并作为参数传入子进程,两者之间通过put( )放入数据,通过get( )取出数据,执行了get( )函数之后队列中的数据会被同时删除,可以使用multiprocessing模块的Queue实现多进程之间的数据传递。

import threading
import time
from queue import Queue

def producer(queue):
    for i in range(100):
        print('{}存入了{}'.format(threading.current_thread().name, i))
        queue.put(i)
        time.sleep(0.1)
    return

def consumer(queue):
    for x in range(100):
        value = queue.get()
        print('{}取到了{}'.format(threading.current_thread().name, value))
        time.sleep(0.1)
        if not value:
            return

if __name__ == '__main__':
    queue = Queue()
    t1 = threading.Thread(target=producer, args=(queue,))
    t2 = threading.Thread(target=consumer, args=(queue,))
    t3 = threading.Thread(target=consumer, args=(queue,))
    t4 = threading.Thread(target=consumer, args=(queue,))
    t6 = threading.Thread(target=consumer, args=(queue,))
    t1.start()
    t2.start()
    t3.start()
    t4.start()
    t6.start()

多线程版聊天

import socket
import threading

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind(('0.0.0.0', 8080))


def send_msg():
    ip = input('请输入您要聊天的ip:')
    port = int(input('请输入对方的端口号:'))
    while True:
        msg = input('请输入聊天内容:')
        s.sendto(msg.encode('utf-8'), (ip, port))
        if msg == "bye":
            ip = input('请输入您要聊天的ip:')
            port = int(input('请输入对方的端口号:'))


def recv_msg():
    while True:
        content, addr = s.recvfrom(1024)
        print('接收到了{}主机{}端口的消息:{}'.format(addr[0], addr[1], content.decode('utf-8')),file=open('history.txt', 'a', encoding='utf-8'))


send_thread = threading.Thread(target=send_msg)
recv_thread = threading.Thread(target=recv_msg)

send_thread.start()
recv_thread.start()

进程

程序:例如xxx.py这是程序,是一个静态的。

进程:一个程序运行起来后,代码+用到的资源 称之为进程,它是操作系统分配资源的基本单元。

不仅可以通过线程完成多任务,进程也是可以的。

进程的状态

工作中,任务数往往大于cpu的核数,即一定有一些任务正在执行,而另外一些任务在等待cpu进行执行,因此导致了有了不同的状态。

  • 就绪态:运行的条件都已经满足,正在等在cpu执行。
  • 执行态:cpu正在执行其功能。
  • 等待态:等待某些条件满足,例如一个程序sleep了,此时就处于等待态。

创建进程

multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象,这个对象可以理解为是一个独立的进程,可以执行另外的事情。

示例:创建一个进程,执行两个死循环。

from multiprocessing import Process
import time


def run_proc():
    """子进程要执行的代码"""
    while True:
        print("----2----")
        time.sleep(1)


if __name__=='__main__':
    p = Process(target=run_proc)
    p.start()
    while True:
        print("----1----")
        time.sleep(1)

说明

  • 创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动

方法说明

Process( target [, name [, args [, kwargs]]])

  • target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码
  • args:给target指定的函数传递的参数,以元组的方式传递
  • kwargs:给target指定的函数传递命名参数
  • name:给进程设定一个名字,可以不设定

Process创建的实例对象的常用方法:

  • start():启动子进程实例(创建子进程)
  • is_alive():判断进程子进程是否还在活着
  • join([timeout]):是否等待子进程执行结束,或等待多少秒
  • terminate():不管任务是否完成,立即终止子进程

Process创建的实例对象的常用属性:

  • name:当前进程的别名,默认为Process-N,N为从1开始递增的整数
  • pid:当前进程的pid(进程号)

示例:

from multiprocessing import Process
import os
from time import sleep


def run_proc(name, age, **kwargs):
    for i in range(10):
        print('子进程运行中,name= %s,age=%d ,pid=%d...' % (name, age, os.getpid()))
        print(kwargs)
        sleep(0.2)

if __name__=='__main__':
    p = Process(target=run_proc, args=('test',18), kwargs={"m":20})
    p.start()
    sleep(1)  # 1秒中之后,立即结束子进程
    p.terminate()
    p.join()

线程和进程

功能

  • 进程,能够完成多任务,比如 在一台电脑上能够同时运行多个QQ。
  • 线程,能够完成多任务,比如 一个QQ中的多个聊天窗口。

定义的不同

  • 进程是系统进行资源分配和调度的一个独立单位.
  • 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源。

区别

  • 一个程序至少有一个进程,一个进程至少有一个线程.
  • 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
  • 进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率
  • 线线程不能够独立执行,必须依存在进程中
  • 可以将进程理解为工厂中的一条流水线,而其中的线程就是这个流水线上的工人

优缺点

线程和进程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护;而进程正相反。

进程间通信-Queue

from multiprocessing import Queue
q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息
q.put("消息1") 
q.put("消息2")
print(q.full())  #False
q.put("消息3")
print(q.full()) #True

#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
    q.put("消息4",True,2)
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

try:
    q.put_nowait("消息4")
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

#推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
    q.put_nowait("消息4")

#读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())

说明

初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);

  • Queue.qsize():返回当前队列包含的消息数量;
  • Queue.empty():如果队列为空,返回True,反之False ;
  • Queue.full():如果队列满了,返回True,反之False;
  • Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;

2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;

  • Queue.get_nowait():相当Queue.get(False);
  • Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;

1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;

2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;

  • Queue.put_nowait(item):相当Queue.put(item, False);

使用Queue实现进程共享

我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
    for value in ['A', 'B', 'C']:
        print('Put %s to queue...' % value)
        q.put(value)
        time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
    while True:
        if not q.empty():
            value = q.get(True)
            print('Get %s from queue.' % value)
            time.sleep(random.random())
        else:
            break

if __name__=='__main__':
    # 父进程创建Queue,并传给各个子进程:
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))
    # 启动子进程pw,写入:
    pw.start()    
    # 等待pw结束:
    pw.join()
    # 启动子进程pr,读取:
    pr.start()
    pr.join()
    print('所有数据都写入并且读完')

进程池

当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。

初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务,请看下面的实例:

from multiprocessing import Pool
import os, time, random

def worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d" % (msg,os.getpid()))
    # random.random()随机生成0~1之间的浮点数
    time.sleep(random.random()*2) 
    t_stop = time.time()
    print(msg,"执行完毕,耗时%0.2f" % (t_stop-t_start))

po = Pool(3)  # 定义一个进程池,最大进程数3
for i in range(0,10):
    # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
    # 每次循环将会用空闲出来的子进程去调用目标
    po.apply_async(worker,(i,))

print("----start----")
po.close()  # 关闭进程池,关闭后po不再接收新的请求
po.join()  # 等待po中所有子进程执行完成,必须放在close语句之后
print("-----end-----")

运行效果:

----start----
0开始执行,进程号为21466
1开始执行,进程号为21468
2开始执行,进程号为21467
0 执行完毕,耗时1.01
3开始执行,进程号为21466
2 执行完毕,耗时1.24
4开始执行,进程号为21467
3 执行完毕,耗时0.56
5开始执行,进程号为21466
1 执行完毕,耗时1.68
6开始执行,进程号为21468
4 执行完毕,耗时0.67
7开始执行,进程号为21467
5 执行完毕,耗时0.83
8开始执行,进程号为21466
6 执行完毕,耗时0.75
9开始执行,进程号为21468
7 执行完毕,耗时1.03
8 执行完毕,耗时1.05
9 执行完毕,耗时1.69
-----end-----

multiprocessing.Pool常用函数解析:

  • apply_async(func[, args[, kwds]]) :使用非阻塞方式调用func(并行执行,堵塞方式必须等待上一个进程退出才能执行下一个进程),args为传递给func的参数列表,kwds为传递给func的关键字参数列表;
  • close():关闭Pool,使其不再接受新的任务;
  • terminate():不管任务是否完成,立即终止;
  • join():主进程阻塞,等待子进程的退出, 必须在close或terminate之后使用;

进程池中的Queue

如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:

RuntimeError: Queue objects should only be shared between processes through inheritance.

下面的实例演示了进程池中的进程如何通信:

# 修改import中的Queue为Manager
from multiprocessing import Manager, Pool
import os, time, random


def reader(q):
    print("reader启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in range(q.qsize()):
        print("reader从Queue获取到消息:%s" % q.get(True))


def writer(q):
    print("writer启动(%s),父进程为(%s)" % (os.getpid(), os.getppid()))
    for i in "helloworld":
        q.put(i)


if __name__ == "__main__":
    print("(%s) start" % os.getpid())
    q = Manager().Queue()  # 使用Manager中的Queue
    po = Pool()
    po.apply_async(writer, (q,))

    time.sleep(1)  # 先让上面的任务向Queue存入数据,然后再让下面的任务开始从中取数据

    po.apply_async(reader, (q,))
    po.close()
    po.join()
    print("(%s) End" % os.getpid())

运行结果:

(4171) start
writer启动(4173),父进程为(4171)
reader启动(4174),父进程为(4171)
reader从Queue获取到消息:h
reader从Queue获取到消息:e
reader从Queue获取到消息:l
reader从Queue获取到消息:l
reader从Queue获取到消息:o
reader从Queue获取到消息:w
reader从Queue获取到消息:o
reader从Queue获取到消息:r
reader从Queue获取到消息:l
reader从Queue获取到消息:d
(4171) End

01-多任务

import threading, time


def dance():
    for i in range(50):
        time.sleep(0.2)
        print('我正在跳舞')


def sing():
    for i in range(50):
        time.sleep(0.2)
        print('我正在唱歌')


# 多个任务同时执行
# Python里执行多任务: 多线程、多进程、多进程+多线程
# dance()
# singe()

# target 需要的是一个函数,用来指定线程需要执行的任务
t1 = threading.Thread(target=dance)  # 创建了线程1
t2 = threading.Thread(target=sing)  # 创建了线程2

# 启动线程
t1.start()
t2.start()

02-多线程聊天

import socket, sys
import threading

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind(('192.168.31.199', 8080))


def send_msg():
    while True:
        msg = input('请输入您要发送的内容:')
        s.sendto(msg.encode('utf8'), ('192.168.31.199', 9090))
        if msg == 'exit':
            break


def recv_msg():
    while True:
        # data的数据类型是一个元组
        # 元组里第0个元素是接收到的数据
        # 元组里第1个元素是发送方的ip地址和端口号
        data, addr = s.recvfrom(1024)
        print('接收到了{}地址{}端口的消息:{}'.format(addr[0], addr[1], data.decode('utf8')),
              file=open('消息记录.txt', 'a', encoding='utf8'))


t1 = threading.Thread(target=send_msg)
t2 = threading.Thread(target=recv_msg)

t1.start()
t2.start()

03-多线程开发

import threading
import time

# 多个线程可以同时操作一个全局变量(多个线程共享全局变量)
# 线程安全问题
ticket = 20


def sell_ticket():
    global ticket
    while True:  # ticket = 1  线程1:1  线程2: 1
        if ticket > 0:
            time.sleep(1)  # 线程1: ticket=1  线程2:ticket=1
            ticket -= 1  # 线程1: ticket = 0  线程2:ticket=-1
            print('{}卖出一张票,还剩{}张'.format(threading.current_thread().name, ticket))
        else:
            print('票卖完了')
            break


t1 = threading.Thread(target=sell_ticket, name='线程1')
t2 = threading.Thread(target=sell_ticket, name='线程2')

t1.start()
t2.start()

04-线程锁

import threading
import time

ticket = 20

# 创建一把锁
lock = threading.Lock()


def sell_ticket():
    global ticket
    while True:
        print('呵呵呵')
        print('哈哈哈')
        print('ddd')
        print('ppp')
        print('sss')
        print('ttt')
        print('xxx')
        lock.acquire()  # 加同步锁
        if ticket > 0:
            time.sleep(1)
            ticket -= 1
            lock.release()
            print('{}卖出一张票,还剩{}张'.format(threading.current_thread().name, ticket))
        else:
            lock.release()
            print('票卖完了')
            break


t1 = threading.Thread(target=sell_ticket, name='线程1')
t2 = threading.Thread(target=sell_ticket, name='线程2')

t1.start()
t2.start()

05-线程间通信

import threading, queue
import time


def produce():
    for i in range(10):
        time.sleep(0.5)
        print('生产++++++面包{} {}'.format(threading.current_thread().name, i))
        q.put('{}{}'.format(threading.current_thread().name, i))


def consumer():
    while True:
        time.sleep(1)
        # q.get()方法时一个阻塞的方法
        print('{}买到------面包{}'.format(threading.current_thread().name, q.get()))


q = queue.Queue()  # 创建一个q

# 一条生产线
pa = threading.Thread(target=produce, name='pa')
pb = threading.Thread(target=produce, name='pb')
pc = threading.Thread(target=produce, name='pc')

# 一条消费线
ca = threading.Thread(target=consumer, name='ca')
cb = threading.Thread(target=consumer, name='cb')
cc = threading.Thread(target=consumer, name='cc')

pa.start()
pb.start()
pc.start()

ca.start()
cb.start()
cc.start()

06-多线程

import multiprocessing, time, os


def dance(n):
    for i in range(n):
        time.sleep(0.5)
        print('正在跳舞{},pid={}'.format(i, os.getpid()))


def sing(m):
    for i in range(m):
        time.sleep(0.5)
        print('正在唱歌{},pid={}'.format(i, os.getpid()))


if __name__ == '__main__':
    print('主进程的pid={}'.format(os.getpid()))
    # 创建了两个进程
    # target 用来表示执行的任务
    # args 用来传参,类型是一个元组
    p1 = multiprocessing.Process(target=dance, args=(100,))
    p2 = multiprocessing.Process(target=sing, args=(100,))

    p1.start()
    p2.start()

07-进程不共享全局变量

import os, multiprocessing, threading

n = 100


def test():
    global n
    n += 1
    print('test==={}里n的值是{}'.format(os.getpid(), hex(id(n))))


def demo():
    global n
    n += 1
    print('demo===={}里n的值是{}'.format(os.getpid(), hex(id(n))))


print(threading.current_thread().name)
test()  # 101
demo()  # 102

# 同一个主进程里的两个子线程。线程之间可以共享同一进程的全局变量

# t1 = threading.Thread(target=test)
# t2 = threading.Thread(target=demo)
# t1.start()
# t2.start()

# if __name__ == '__main__':
# 不同进程各自保存一份全局变量,不会共享全局变量
# p1 = multiprocessing.Process(target=test)
# p2 = multiprocessing.Process(target=demo)
# p1.start()  # 101
# p2.start()  # 101

08-进程间通信

import os, multiprocessing, time


def producer(x):
    for i in range(10):
        time.sleep(0.5)
        print('生产了+++++++pid{} {}'.format(os.getpid(), i))
        x.put('pid{} {}'.format(os.getpid(), i))


def consumer(x):
    for i in range(10):
        time.sleep(0.3)
        print('消费了-------{}'.format(x.get()))


if __name__ == '__main__':
    q = multiprocessing.Queue()

    p1 = multiprocessing.Process(target=producer, args=(q,))
    p2 = multiprocessing.Process(target=producer, args=(q,))
    p3 = multiprocessing.Process(target=producer, args=(q,))
    p1.start()
    p2.start()
    p3.start()

    c2 = multiprocessing.Process(target=consumer, args=(q,))
    c2.start()

09-queue队列

import multiprocessing, queue

# q1 = multiprocessing.Queue()  # 进程间通信
# q2 = queue.Queue()  # 线程间通信


# 创建队列时,可以指定最大长度。默认值是0,表示不限
q = multiprocessing.Queue(5)

q.put('hello')
q.put('good')
q.put('yes')
q.put('ok')
q.put('hi')

# print(q.full())  # True
# q.put('how')  # 无法放进去

# block = True:表示是阻塞,如果队列已经满了,就等待
# timeout 超时,等待多久以后程序会出错,单位是秒
# q.put('how', block=True, timeout=5)

# q.put_nowait('how')  # 等价于  q.put('how',block=False)

print(q.get())
print(q.get())
print(q.get())
print(q.get())
print(q.get())
# print(q.get())
# q.get(block=True, timeout=10)
q.get_nowait()

10-进程池的使用

from multiprocessing import Pool
import os, time, random


def worker(msg):
    t_start = time.time()
    print("%s开始执行,进程号为%d" % (msg, os.getpid()))
    # random.random()随机生成0~1之间的浮点数
    time.sleep(random.random() * 2)
    t_stop = time.time()
    print(msg, "执行完毕,耗时%0.2f" % (t_stop - t_start))


if __name__ == '__main__':
    po = Pool(3)  # 定义一个进程池,最大进程数3
    for i in range(0, 10):
        # Pool().apply_async(要调用的目标,(传递给目标的参数元祖,))
        # 每次循环将会用空闲出来的子进程去调用目标
        po.apply_async(worker, (i,))

    print("----start----")
    po.close()  # 关闭进程池,关闭后po不再接收新的请求
    po.join()  # 等待po中所有子进程执行完成,必须放在close语句之后
    print("-----end-----")

11-join方法的使用

# join 线程和进程都有join方法
import threading
import time

x = 10


def test(a, b):
    time.sleep(1)
    global x
    x = a + b


# test(1, 1)
# print(x)

t = threading.Thread(target=test, args=(1, 1))
t.start()
t.join()  # 让主线程等待

print(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老板来片烤面包

君子博学于文,赠之以礼,谢君~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值