基于OpenVINO部署PaddlePadle-YOLOE模型
1. PP-YOLOE模型
目标检测作为计算机视觉领域的顶梁柱,不仅可以独立完成车辆、商品、缺陷检测等任务,也是人脸识别、视频分析、以图搜图等复合技术的核心模块,在自动驾驶、工业视觉、安防交通等领域的商业价值有目共睹。
PaddleDetection为基于飞桨PaddlePaddle的端到端目标检测套件,内置30+模型算法及250+预训练模型,覆盖目标检测、实例分割、跟踪、关键点检测等方向,其中包括服务器端和移动端高精度、轻量级产业级SOTA模型、冠军方案和学术前沿算法,并提供配置化的网络模块组件、十余种数据增强策略和损失函数等高阶优化支持和多种部署方案,在打通数据处理、模型开发、训练、压缩、部署全流程的基础上,提供丰富的案例及教程,加速算法产业落地应用。

PP-YOLOE 是PaddleDetection推出的一种高精度SOTA目标检测模型,基于PP-YOLOv2的卓越的单阶段Anchor-free模型,超越了多种流行的YOLO模型。
- 尺寸多样:PP-YOLOE根据不同应用场景设计了s/m/l/x,4个尺寸的模型来支持不同算力水平的硬件,无论是哪个尺寸,精度-速度的平衡都超越当前所有同等计算量下的YOLO模型!可以通过width multiplier和depth multiplier配置。
- 性能卓越:具体来说,PP-YOLOE-l在COCO test-dev上以精度51.4%,TRT FP16推理速度149 FPS的优异数据,相较YOLOX,精度提升1.3%,加速25%;相较YOLOv5,精度提升0.7%,加速26.8%。训练速度较PP-YOLOv2提高33%,降低模型训练成本。
- 部署友好:与此同时,PP-YOLOE在结构设计上避免使用如deformable convolution或者matrix NMS之类的特殊算子,使其能轻松适配更多硬件。当前已经完备支持NVIDIA V

本文介绍了PP-YOLOE模型和OpenVINOTM工具套件。PP-YOLOE是PaddleDetection推出的高精度目标检测模型,尺寸多样、性能卓越、部署友好。OpenVINOTM可加快计算机视觉和深度学习视觉应用开发。还说明了项目环境,包括操作系统、软件版本等,最后提及用OpenVINOTM部署PP-YOLOE模型的实现。
最低0.47元/天 解锁文章
1662

被折叠的 条评论
为什么被折叠?



