70. Climbing Stairs
题目
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
解题方案
标签:dynamic programming
思路:
- 典型的动态规划题
- 定义
dp[x]
为输入为
x
的结果,因为只能走1步或者2步,所以状态方程为
dp[x]=dp[x−1]+dp[x−2]
代码1:
class Solution:
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
dp = [1,2]
for i in range(2,n):
dp.append( dp[i-1] + dp[i-2] )
return dp[n-1]
因为本质相当于斐波那契数列,所以有更简洁的代码
class Solution:
def climbStairs(self, n):
"""
:type n: int
:rtype: int
"""
a = b = 1
for _ in range(n):
a, b = b, a + b
return a